当前位置: 首页 > news >正文

向量——通俗地解释

1. 向量

  向量是一个既有大小(模)又有方向的对象,它可以用来描述空间中的位置、力或速度等量。我们可以从物理、数学和计算机的角度来看待向量,这三种观点看似不同却有关联。
(1)在物理专业视角下,向量是空间中的箭头,决定一个向量的是它的长度(大小)和它所指的方向。处在平面中的向量是二维的,而处在我们所生活的空间中的向量是三维的。
(2)在计算机专业视角下,向量是有序的数字列表,例如二维向量 x = [ 1 , 2 ] \boldsymbol{x}=[1,2] x=[1,2]
(3)在数学专业视角下,向量可以是任何东西,只要保证两个向量相加以及数字与向量相乘是有意义的即可。向量加法与向量数乘贯穿线性代数始终,二者起着很重要的作用。

2. 向量是有序的数字列表

(1)在二维空间中(X-Y平面),我们通常以原点(也就是坐标(0,0))作为起点,一个向量的坐标由"两个数"组成。而这"两个数"表示:如何从原点(向量起点)出发到达它的尖端(向量终点)。例如,二维向量 x = [ 2 , 4 ] \boldsymbol{x}=[2,4] x=[2,4],向量通常使用方括号([])括起来。对于二维向量 x = [ x 0 , y 0 ] \boldsymbol{x}=[x_0,y_0] x=[x0,y0],第一个数 x 0 x_0 x0 表示向量沿着 X X X 轴能走多远;第二个数 y 0 y_0 y0 表示向量沿着 Y Y Y 轴能走多远。数 x 0 x_0 x0 y 0 y_0 y0的正负表示向量移动的方向,“正数” 表示向着"X-Y"的正半轴移动,“负数"表示向着"X-Y"的负半轴移动。每"一对数"给出唯一的一个二维向量,而每一个二维向量恰好对应唯一的"一对数”。

(2)在三维空间中(X-Y-Z)中,我们通常也以原点(也就是坐标(0,0,0))作为起点,每个向量由一对三元组构成,例如三维向量 x = [ 2 , 4 , 6 ] \boldsymbol{x}=[2,4,6] x=[2,4,6]。对于三维向量 x = [ x 0 , y 0 , z 0 ] \boldsymbol{x}=[x_0,y_0,z_0] x=[x0,y0,z0],第一个数 x 0 x_0 x0 表示向量沿着 X X X 轴能走多远;第二个数 y 0 y_0 y0 表示向量沿着 Y Y Y 轴能走多远;第三个数 z 0 z_0 z0 表示向量沿着 Z Z Z 轴能走多远。每个"三元组"给出唯一的一个三维向量,而每个三维向量恰好对应唯一的"三元组"。

(3)当向量空间的维度超过三维时,我们直观上是想象不到的,但仍然可以使用数字来表示多维向量。例如:四维向量 x = [ 2 , 4 , 6 , 8 ] \boldsymbol{x}=[2,4,6,8] x=[2,4,6,8],六维向量 x = [ 2 , 4 , 6 , 8 , 10 , 12 ] \boldsymbol{x}=[2,4,6,8,10,12] x=[2,4,6,8,10,12]。由此可以得到 n n n 维向量 x \boldsymbol{x} x 的表示形式为: x = [ x 0 , x 1 , x 2 , … , x n ] \boldsymbol{x}=[x_0,x_1,x_2,\ldots ,x_n] x=[x0,x1,x2,,xn]

3 通俗解释:向量加法与向量数乘

3.1 向量加法

(1)使用二维坐标系(X-Y)来解释向量的加法
  从下图一可以看出:向量 v = [ 1 , 2 ] \boldsymbol{v}=[1,2] v=[1,2],向量 w = [ 3 , − 1 ] \boldsymbol{w}=[3,-1] w=[3,1]

在这里插入图片描述

图1 二维向量 v 和 w

接下来我们对二维向量 v \boldsymbol{v} v w \boldsymbol{w} w 进行相加。具体而言,相加之后的向量就是从第一个向量出发,指向第二向量的终点,两个向量之和( v + w \boldsymbol{v}+\boldsymbol{w} v+w)的表示如下图2所示。由下图2可以看出 v + w = [ 4 , 1 ] \boldsymbol{v}+\boldsymbol{w}=[4,1] v+w=[4,1] ,而向量 v \boldsymbol{v} v w \boldsymbol{w} w按元素累加可得: [ 4 , 1 ] [4,1] [4,1],也就是说:向量的加法就是对应坐标位置的元素进行累加。

在这里插入图片描述

图2 向量加法

(2)向量加法的通俗解释
  我们可以把每个向量看成是一种特定的运动,即在空间中朝着一个方向迈出一定距离。对于上图2中的向量加法,我们先沿着第一个向量 v \boldsymbol{v} v 的方向进行运动,然后再按照第二个向量 w \boldsymbol{w} w 的方向进行移动。其实这两次的总体运动效果就等价于从原点出发,沿着向量 v + w \boldsymbol{v}+\boldsymbol{w} v+w的方向进行运动。
  更通俗地来讲,你可以把向量 v + w \boldsymbol{v}+\boldsymbol{w} v+w看成从原点出发,先向右走1步,再往上移动2步,接着往右移动3步,最后向下移动1步。或者也可以看作从原点出发,先向右走4步,再向上移动1步。这也就证明了: v + w = [ 1 , 2 ] + [ 3 , − 1 ] = [ 1 + 3 , 2 − 1 ] = [ 4 , 1 ] \boldsymbol{v}+\boldsymbol{w}=[1,2]+[3,-1]=[1+3,2-1]=[4,1] v+w=[1,2]+[3,1]=[1+3,21]=[4,1]

3.2 向量数乘

  假设 v = [ 3 , 1 ] \boldsymbol{v}=[3,1] v=[3,1],那么 2 v = [ 2 × 3 , 2 × 1 ] = [ 6 , 2 ] 2\boldsymbol{v}=[2×3,2×1]=[6,2] 2v=[2×3,2×1]=[6,2],如下图3所示。
在这里插入图片描述

图3 向量数乘1

由图3可知, 2 v 2\boldsymbol{v} 2v相当于把向量 v \boldsymbol{v} v 拉长为原来的2倍。如果是 1 3 v = [ 1 3 × 3 , 1 3 × 1 ] = [ 1 , 1 3 ] \frac{1}{3}\boldsymbol{v}=[\frac{1}{3}×3,\frac{1}{3}×1]=[1,\frac{1}{3}] 31v=[31×3,31×1]=[1,31],那么就相当于把向量 v \boldsymbol{v} v 缩短为原来的 1 3 \frac{1}{3} 31,如下图4所示。
在这里插入图片描述

图4 向量数乘2

当一个向量与一个负数相乘时,例如 − 1.8 v = [ − 1.8 × 3 , − 1.8 × 1 ] = [ − 5.4 , − 1.8 ] -1.8\boldsymbol{v}=[-1.8×3,-1.8×1]=[-5.4,-1.8] 1.8v=[1.8×3,1.8×1]=[5.4,1.8],表示首先这个向量 v \boldsymbol{v} v 先反向,然后伸长为原来的1.8倍,其运算结果如下图5所示。

在这里插入图片描述

图5 向量数乘3

上述的这种拉伸或者压缩,有时又使向量反向的过程被称为缩放。

参考视频:【熟肉】线性代数的本质 - 01 - 向量究竟是什么?

相关文章:

向量——通俗地解释

1. 向量 向量是一个既有大小(模)又有方向的对象,它可以用来描述空间中的位置、力或速度等量。我们可以从物理、数学和计算机的角度来看待向量,这三种观点看似不同却有关联。 (1)在物理专业视角下,向量是空间中的箭头&a…...

新书宣传:《量子安全:信息保护新纪元》

《量子安全:信息保护新纪元》 前言本书的看点本书的目录结语 前言 你好! 这是我第一次发布类广告的博文,目的也很单纯,希望以作者的身份介绍一下自己出版的图书——《量子安全:信息保护新纪元》。此书于2024年7月出版…...

Android Framework(五)WMS-窗口显示流程——窗口布局与绘制显示

文章目录 relayoutWindow流程概览应用端处理——ViewRootImpl::setView -> relayoutWindowViewRootImpl::setViewViewRootImpl::performTraversalsViewRootImpl::relayoutWindow Surface的创建WindowManagerService::relayoutWindow了解容器类型和Buff类型的SurfaceBuff类型…...

【计网】计算机网络基础

当自律变成一种本能的习惯, 你就会享受到它的快乐。 --- 村上春树 --- 初识计算机网络 1 初识协议1.1 协议分层1.2 OSI七层模型1.3 TCP / IP协议 2 初识局域网2.1 什么是局域网2.2 MAC地址2.3 局域网通信 3 简单认识IP地址 1 初识协议 1.1 协议分层 首先&#…...

秃姐学AI系列之:实战Kaggle比赛:图像分类(CIFAR-10)

目录 准备工作 整理数据集 将验证集从原始的训练集中拆分出来 整理测试集 使用函数 图像增广 读取数据集 定义模型 定义训练函数 训练和验证数据集 对测试集进行分类并提交结果 准备工作 首先导入竞赛需要的包和模块 import collections import math import os i…...

nginx: [error] invalid PID number ““ in “/run/nginx.pid“

出现这个报错的原因 : 空值:“/run/nginx.pid” 文件为空或者内容不是有效的PID数字 文件损坏:如果PID文件被意外修改,例如被其他程序覆盖了内容,可能会显示为无效。 路径错误:Nginx无法找到指定的PID文件…...

Java使用Apache POI向Word文档中填充数据

Java使用Apache POI向Word文档中填充数据 向一个包含占位符的Word文档中填充数据&#xff0c;并保存为新的文档。 准备工作 环境搭建 在项目中添加Apache POI依赖。在pom.xml中添加如下依赖&#xff1a; <dependencies><dependency><groupId>org.apache.po…...

Gitflow基础知识

0.理想状态 现状 听完后的理想状态 没使用过 git 知道 git 是什么&#xff0c;会用 git 基础流程命令 用过 git&#xff0c;但只通过图形化界面操作 脱离图形化界面操作&#xff0c;通过 git 命令操作 会 git 命令 掌握 gitflow 规范&#xff0c;合理使用 rebase 和解决…...

NLP基础及其代码-tokenizer

基础知识 NLP-分词器&#xff1a;SentencePiece【参考Chinese-LLaMA-Alpaca在通用中文语料上训练的20K中文词表并与原版LLaMA模型的32K词表进行合并的代码】_sentencepiece 中文训练-CSDN博客 【OpenLLM 008】大模型基础组件之分词器-万字长文全面解读LLM中的分词算法与分词器…...

OpenCV结构分析与形状描述符(8)点集凸包计算函数convexHull()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 查找一个点集的凸包。 函数 cv::convexHull 使用斯克拉斯基算法&#xff08;Sklansky’s algorithm&#xff09;来查找一个二维点集的凸包&#…...

灰光模块,彩光模块-介绍

1. 引用 知识分享系列一&#xff1a;5G基础知识-CSDN博客 5G前传的最新进展-CSDN博客 灰光和彩光_通信行业5G招标系列点评之二&#xff1a;一文读懂5G前传-光纤、灰光、彩光、CWDM、LWDM、MWDM...-CSDN博客 ADOP带你了解&#xff1a;CWDM、DWDM、MWDM、LWDM&#xff1a;快速…...

python-新冠病毒

题目描述 假设我们掌握了特定时间段内特定城市的新冠病毒感染病例的信息。在排名 i 的当天有 i 个案例&#xff0c;即&#xff1a; 第一天有一例感染第二天有两例感染第三天有三例感染以此类推...... 请计算 n 天内的感染总数和每天平均感染数。 输入 整数 n 表示天数&…...

2023年408真题计算机网络篇

https://zhuanlan.zhihu.com/p/6954228062023年网络规划设计师上午真题解析TCP流量计算_哔哩哔哩_bilibili 1 1在下图所示的分组交换网络中&#xff0c;主机H1和H2通过路由器互联&#xff0c;2段链路的数据传输速率为100 Mb/s、时延带宽积 &#xff08;即单向传播时延带宽&am…...

分类学习器(Classification Learner App)MATLAB

在MATLAB中&#xff0c;分类学习器用于构建和评估分类模型。MATLAB提供了一些工具和功能&#xff0c;帮助你进行分类任务&#xff0c;例如分类学习器应用程序、统计和机器学习工具箱中的函数等。 数据集介绍 不同的人被要求在平板电脑上写字母"J"、“V"和&quo…...

DolphinDB 基准性能测试工具:金融模拟数据生成模块合集

测试 DolphinDB 数据库性能时&#xff0c;往往需要快速写入一些测试数据。为方便用户快速完成简单的基准性能测试&#xff0c;金融 Mock 数据生成模块覆盖了常用的金融数据集&#xff0c;满足用户生成模拟数据的需求。基于本模块生成的模拟数据不具有实际意义&#xff0c;建议仅…...

BUUCTF—[BJDCTF2020]The mystery of ip

题解 打开环境点击上面的flag可以看到这个IP页面。 抓个包看看有啥东西无&#xff0c;可以看到在返回包有IP。 看到IP就想到X-Forwarded-For这个玩意&#xff0c;我们用X-Forwarded-For随便添加个IP看看。可以看到返回的IP内容变成了123。 X-Forwarded-For:123 推测它会输出我…...

leecode100题-双指针-三数之和

给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 答案中不可以包含重复的三元组。 示例 1&#xff1a; 输入…...

计算机毕业设计PySpark+Django考研分数线预测 考研院校推荐系统 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习 深度学习

《PySparkDjango考研分数线预测与推荐系统》开题报告 一、研究背景与意义 随着教育水平的提高和就业竞争的加剧&#xff0c;越来越多的学生选择继续深造&#xff0c;参加研究生入学考试&#xff08;考研&#xff09;。然而&#xff0c;考研信息繁杂&#xff0c;选择专业和院校…...

Go语言多态实践以及gin框架c.BindJSON序列化遇到的坑

遇到的问题 如果定义的接收结构体字段是interface{}&#xff0c;在调用gin的 c.BindJSON 方法后会直接转为map&#xff0c; 导致无法断言为其他类型 场景 在创建工程请求中&#xff0c;根据工程类别的不同会有多种创建参数&#xff0c;比如 // A 类型需要编译 所以有这些字…...

SpringCloud神领物流学习笔记:项目概述(一)

SpringCloud神领物流学习笔记&#xff1a;项目概述&#xff08;一&#xff09; 文章目录 SpringCloud神领物流学习笔记&#xff1a;项目概述&#xff08;一&#xff09;1、项目介绍2、基本业务流程3、系统架构4、技术架构 1、项目介绍 ​ 神领物流是一个基于微服务架构体系的【…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

MySQL体系架构解析(三):MySQL目录与启动配置全解析

MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录&#xff0c;这个目录下存放着许多可执行文件。与其他系统的可执行文件类似&#xff0c;这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中&#xff0c;用…...