当前位置: 首页 > news >正文

向量——通俗地解释

1. 向量

  向量是一个既有大小(模)又有方向的对象,它可以用来描述空间中的位置、力或速度等量。我们可以从物理、数学和计算机的角度来看待向量,这三种观点看似不同却有关联。
(1)在物理专业视角下,向量是空间中的箭头,决定一个向量的是它的长度(大小)和它所指的方向。处在平面中的向量是二维的,而处在我们所生活的空间中的向量是三维的。
(2)在计算机专业视角下,向量是有序的数字列表,例如二维向量 x = [ 1 , 2 ] \boldsymbol{x}=[1,2] x=[1,2]
(3)在数学专业视角下,向量可以是任何东西,只要保证两个向量相加以及数字与向量相乘是有意义的即可。向量加法与向量数乘贯穿线性代数始终,二者起着很重要的作用。

2. 向量是有序的数字列表

(1)在二维空间中(X-Y平面),我们通常以原点(也就是坐标(0,0))作为起点,一个向量的坐标由"两个数"组成。而这"两个数"表示:如何从原点(向量起点)出发到达它的尖端(向量终点)。例如,二维向量 x = [ 2 , 4 ] \boldsymbol{x}=[2,4] x=[2,4],向量通常使用方括号([])括起来。对于二维向量 x = [ x 0 , y 0 ] \boldsymbol{x}=[x_0,y_0] x=[x0,y0],第一个数 x 0 x_0 x0 表示向量沿着 X X X 轴能走多远;第二个数 y 0 y_0 y0 表示向量沿着 Y Y Y 轴能走多远。数 x 0 x_0 x0 y 0 y_0 y0的正负表示向量移动的方向,“正数” 表示向着"X-Y"的正半轴移动,“负数"表示向着"X-Y"的负半轴移动。每"一对数"给出唯一的一个二维向量,而每一个二维向量恰好对应唯一的"一对数”。

(2)在三维空间中(X-Y-Z)中,我们通常也以原点(也就是坐标(0,0,0))作为起点,每个向量由一对三元组构成,例如三维向量 x = [ 2 , 4 , 6 ] \boldsymbol{x}=[2,4,6] x=[2,4,6]。对于三维向量 x = [ x 0 , y 0 , z 0 ] \boldsymbol{x}=[x_0,y_0,z_0] x=[x0,y0,z0],第一个数 x 0 x_0 x0 表示向量沿着 X X X 轴能走多远;第二个数 y 0 y_0 y0 表示向量沿着 Y Y Y 轴能走多远;第三个数 z 0 z_0 z0 表示向量沿着 Z Z Z 轴能走多远。每个"三元组"给出唯一的一个三维向量,而每个三维向量恰好对应唯一的"三元组"。

(3)当向量空间的维度超过三维时,我们直观上是想象不到的,但仍然可以使用数字来表示多维向量。例如:四维向量 x = [ 2 , 4 , 6 , 8 ] \boldsymbol{x}=[2,4,6,8] x=[2,4,6,8],六维向量 x = [ 2 , 4 , 6 , 8 , 10 , 12 ] \boldsymbol{x}=[2,4,6,8,10,12] x=[2,4,6,8,10,12]。由此可以得到 n n n 维向量 x \boldsymbol{x} x 的表示形式为: x = [ x 0 , x 1 , x 2 , … , x n ] \boldsymbol{x}=[x_0,x_1,x_2,\ldots ,x_n] x=[x0,x1,x2,,xn]

3 通俗解释:向量加法与向量数乘

3.1 向量加法

(1)使用二维坐标系(X-Y)来解释向量的加法
  从下图一可以看出:向量 v = [ 1 , 2 ] \boldsymbol{v}=[1,2] v=[1,2],向量 w = [ 3 , − 1 ] \boldsymbol{w}=[3,-1] w=[3,1]

在这里插入图片描述

图1 二维向量 v 和 w

接下来我们对二维向量 v \boldsymbol{v} v w \boldsymbol{w} w 进行相加。具体而言,相加之后的向量就是从第一个向量出发,指向第二向量的终点,两个向量之和( v + w \boldsymbol{v}+\boldsymbol{w} v+w)的表示如下图2所示。由下图2可以看出 v + w = [ 4 , 1 ] \boldsymbol{v}+\boldsymbol{w}=[4,1] v+w=[4,1] ,而向量 v \boldsymbol{v} v w \boldsymbol{w} w按元素累加可得: [ 4 , 1 ] [4,1] [4,1],也就是说:向量的加法就是对应坐标位置的元素进行累加。

在这里插入图片描述

图2 向量加法

(2)向量加法的通俗解释
  我们可以把每个向量看成是一种特定的运动,即在空间中朝着一个方向迈出一定距离。对于上图2中的向量加法,我们先沿着第一个向量 v \boldsymbol{v} v 的方向进行运动,然后再按照第二个向量 w \boldsymbol{w} w 的方向进行移动。其实这两次的总体运动效果就等价于从原点出发,沿着向量 v + w \boldsymbol{v}+\boldsymbol{w} v+w的方向进行运动。
  更通俗地来讲,你可以把向量 v + w \boldsymbol{v}+\boldsymbol{w} v+w看成从原点出发,先向右走1步,再往上移动2步,接着往右移动3步,最后向下移动1步。或者也可以看作从原点出发,先向右走4步,再向上移动1步。这也就证明了: v + w = [ 1 , 2 ] + [ 3 , − 1 ] = [ 1 + 3 , 2 − 1 ] = [ 4 , 1 ] \boldsymbol{v}+\boldsymbol{w}=[1,2]+[3,-1]=[1+3,2-1]=[4,1] v+w=[1,2]+[3,1]=[1+3,21]=[4,1]

3.2 向量数乘

  假设 v = [ 3 , 1 ] \boldsymbol{v}=[3,1] v=[3,1],那么 2 v = [ 2 × 3 , 2 × 1 ] = [ 6 , 2 ] 2\boldsymbol{v}=[2×3,2×1]=[6,2] 2v=[2×3,2×1]=[6,2],如下图3所示。
在这里插入图片描述

图3 向量数乘1

由图3可知, 2 v 2\boldsymbol{v} 2v相当于把向量 v \boldsymbol{v} v 拉长为原来的2倍。如果是 1 3 v = [ 1 3 × 3 , 1 3 × 1 ] = [ 1 , 1 3 ] \frac{1}{3}\boldsymbol{v}=[\frac{1}{3}×3,\frac{1}{3}×1]=[1,\frac{1}{3}] 31v=[31×3,31×1]=[1,31],那么就相当于把向量 v \boldsymbol{v} v 缩短为原来的 1 3 \frac{1}{3} 31,如下图4所示。
在这里插入图片描述

图4 向量数乘2

当一个向量与一个负数相乘时,例如 − 1.8 v = [ − 1.8 × 3 , − 1.8 × 1 ] = [ − 5.4 , − 1.8 ] -1.8\boldsymbol{v}=[-1.8×3,-1.8×1]=[-5.4,-1.8] 1.8v=[1.8×3,1.8×1]=[5.4,1.8],表示首先这个向量 v \boldsymbol{v} v 先反向,然后伸长为原来的1.8倍,其运算结果如下图5所示。

在这里插入图片描述

图5 向量数乘3

上述的这种拉伸或者压缩,有时又使向量反向的过程被称为缩放。

参考视频:【熟肉】线性代数的本质 - 01 - 向量究竟是什么?

相关文章:

向量——通俗地解释

1. 向量 向量是一个既有大小(模)又有方向的对象,它可以用来描述空间中的位置、力或速度等量。我们可以从物理、数学和计算机的角度来看待向量,这三种观点看似不同却有关联。 (1)在物理专业视角下,向量是空间中的箭头&a…...

新书宣传:《量子安全:信息保护新纪元》

《量子安全:信息保护新纪元》 前言本书的看点本书的目录结语 前言 你好! 这是我第一次发布类广告的博文,目的也很单纯,希望以作者的身份介绍一下自己出版的图书——《量子安全:信息保护新纪元》。此书于2024年7月出版…...

Android Framework(五)WMS-窗口显示流程——窗口布局与绘制显示

文章目录 relayoutWindow流程概览应用端处理——ViewRootImpl::setView -> relayoutWindowViewRootImpl::setViewViewRootImpl::performTraversalsViewRootImpl::relayoutWindow Surface的创建WindowManagerService::relayoutWindow了解容器类型和Buff类型的SurfaceBuff类型…...

【计网】计算机网络基础

当自律变成一种本能的习惯, 你就会享受到它的快乐。 --- 村上春树 --- 初识计算机网络 1 初识协议1.1 协议分层1.2 OSI七层模型1.3 TCP / IP协议 2 初识局域网2.1 什么是局域网2.2 MAC地址2.3 局域网通信 3 简单认识IP地址 1 初识协议 1.1 协议分层 首先&#…...

秃姐学AI系列之:实战Kaggle比赛:图像分类(CIFAR-10)

目录 准备工作 整理数据集 将验证集从原始的训练集中拆分出来 整理测试集 使用函数 图像增广 读取数据集 定义模型 定义训练函数 训练和验证数据集 对测试集进行分类并提交结果 准备工作 首先导入竞赛需要的包和模块 import collections import math import os i…...

nginx: [error] invalid PID number ““ in “/run/nginx.pid“

出现这个报错的原因 : 空值:“/run/nginx.pid” 文件为空或者内容不是有效的PID数字 文件损坏:如果PID文件被意外修改,例如被其他程序覆盖了内容,可能会显示为无效。 路径错误:Nginx无法找到指定的PID文件…...

Java使用Apache POI向Word文档中填充数据

Java使用Apache POI向Word文档中填充数据 向一个包含占位符的Word文档中填充数据&#xff0c;并保存为新的文档。 准备工作 环境搭建 在项目中添加Apache POI依赖。在pom.xml中添加如下依赖&#xff1a; <dependencies><dependency><groupId>org.apache.po…...

Gitflow基础知识

0.理想状态 现状 听完后的理想状态 没使用过 git 知道 git 是什么&#xff0c;会用 git 基础流程命令 用过 git&#xff0c;但只通过图形化界面操作 脱离图形化界面操作&#xff0c;通过 git 命令操作 会 git 命令 掌握 gitflow 规范&#xff0c;合理使用 rebase 和解决…...

NLP基础及其代码-tokenizer

基础知识 NLP-分词器&#xff1a;SentencePiece【参考Chinese-LLaMA-Alpaca在通用中文语料上训练的20K中文词表并与原版LLaMA模型的32K词表进行合并的代码】_sentencepiece 中文训练-CSDN博客 【OpenLLM 008】大模型基础组件之分词器-万字长文全面解读LLM中的分词算法与分词器…...

OpenCV结构分析与形状描述符(8)点集凸包计算函数convexHull()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 查找一个点集的凸包。 函数 cv::convexHull 使用斯克拉斯基算法&#xff08;Sklansky’s algorithm&#xff09;来查找一个二维点集的凸包&#…...

灰光模块,彩光模块-介绍

1. 引用 知识分享系列一&#xff1a;5G基础知识-CSDN博客 5G前传的最新进展-CSDN博客 灰光和彩光_通信行业5G招标系列点评之二&#xff1a;一文读懂5G前传-光纤、灰光、彩光、CWDM、LWDM、MWDM...-CSDN博客 ADOP带你了解&#xff1a;CWDM、DWDM、MWDM、LWDM&#xff1a;快速…...

python-新冠病毒

题目描述 假设我们掌握了特定时间段内特定城市的新冠病毒感染病例的信息。在排名 i 的当天有 i 个案例&#xff0c;即&#xff1a; 第一天有一例感染第二天有两例感染第三天有三例感染以此类推...... 请计算 n 天内的感染总数和每天平均感染数。 输入 整数 n 表示天数&…...

2023年408真题计算机网络篇

https://zhuanlan.zhihu.com/p/6954228062023年网络规划设计师上午真题解析TCP流量计算_哔哩哔哩_bilibili 1 1在下图所示的分组交换网络中&#xff0c;主机H1和H2通过路由器互联&#xff0c;2段链路的数据传输速率为100 Mb/s、时延带宽积 &#xff08;即单向传播时延带宽&am…...

分类学习器(Classification Learner App)MATLAB

在MATLAB中&#xff0c;分类学习器用于构建和评估分类模型。MATLAB提供了一些工具和功能&#xff0c;帮助你进行分类任务&#xff0c;例如分类学习器应用程序、统计和机器学习工具箱中的函数等。 数据集介绍 不同的人被要求在平板电脑上写字母"J"、“V"和&quo…...

DolphinDB 基准性能测试工具:金融模拟数据生成模块合集

测试 DolphinDB 数据库性能时&#xff0c;往往需要快速写入一些测试数据。为方便用户快速完成简单的基准性能测试&#xff0c;金融 Mock 数据生成模块覆盖了常用的金融数据集&#xff0c;满足用户生成模拟数据的需求。基于本模块生成的模拟数据不具有实际意义&#xff0c;建议仅…...

BUUCTF—[BJDCTF2020]The mystery of ip

题解 打开环境点击上面的flag可以看到这个IP页面。 抓个包看看有啥东西无&#xff0c;可以看到在返回包有IP。 看到IP就想到X-Forwarded-For这个玩意&#xff0c;我们用X-Forwarded-For随便添加个IP看看。可以看到返回的IP内容变成了123。 X-Forwarded-For:123 推测它会输出我…...

leecode100题-双指针-三数之和

给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 答案中不可以包含重复的三元组。 示例 1&#xff1a; 输入…...

计算机毕业设计PySpark+Django考研分数线预测 考研院校推荐系统 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习 深度学习

《PySparkDjango考研分数线预测与推荐系统》开题报告 一、研究背景与意义 随着教育水平的提高和就业竞争的加剧&#xff0c;越来越多的学生选择继续深造&#xff0c;参加研究生入学考试&#xff08;考研&#xff09;。然而&#xff0c;考研信息繁杂&#xff0c;选择专业和院校…...

Go语言多态实践以及gin框架c.BindJSON序列化遇到的坑

遇到的问题 如果定义的接收结构体字段是interface{}&#xff0c;在调用gin的 c.BindJSON 方法后会直接转为map&#xff0c; 导致无法断言为其他类型 场景 在创建工程请求中&#xff0c;根据工程类别的不同会有多种创建参数&#xff0c;比如 // A 类型需要编译 所以有这些字…...

SpringCloud神领物流学习笔记:项目概述(一)

SpringCloud神领物流学习笔记&#xff1a;项目概述&#xff08;一&#xff09; 文章目录 SpringCloud神领物流学习笔记&#xff1a;项目概述&#xff08;一&#xff09;1、项目介绍2、基本业务流程3、系统架构4、技术架构 1、项目介绍 ​ 神领物流是一个基于微服务架构体系的【…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...