当前位置: 首页 > news >正文

第67期 | GPTSecurity周报

图片

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。

Security Papers

1. GitHub Copilot 在编程方面表现出色,但它是否确保了负责任的输出?

简介:大语言模型(LLMs)的快速发展极大地推动了代码补全工具(LCCTs)的进化。这些工具通过整合多种信息源并优先提供代码建议,与传统LLMs不同,它们在安全方面面临独特挑战。特别是,LCCTs在训练时依赖专有代码数据集,这可能增加敏感数据泄露的风险。研究表明,LCCTs存在显著的安全漏洞,例如,针对GitHub Copilot的越狱攻击成功率高达99.4%,而从其中提取敏感用户数据的成功率也相当高。这些发现强调了LCCTs在安全方面的挑战,并为加强其安全框架提供了重要方向。

链接:

https://arxiv.org/abs/2408.11006

2. 语言模型应用程序中的数据泄露:对 OpenAI 的 GPT 产品的深入调查

简介:研究者们在探索大语言模型(LLM)应用的数据实践透明度时,以OpenAI的GPT应用生态系统作为案例研究。他们开发了一个基于LLM的框架,对GPT及其动作(外部服务)的源代码进行了静态分析,以揭示其数据收集的做法。研究发现,这些动作收集了大量用户数据,包括OpenAI明令禁止的敏感信息,如密码。此外,一些与广告和分析相关的动作嵌入在多个GPT中,使得它们能够跨平台追踪用户活动。动作的共现还可能导致用户数据的进一步暴露,增加了隐私风险。研究者还开发了一个基于LLM的隐私政策分析框架,用以自动检查动作的数据收集是否与隐私政策中的披露相一致。结果显示,大多数收集的数据类型在隐私政策中并未明确披露,仅有5.8%的动作清晰地说明了它们的数据收集实践。这一发现强调了LLM应用在数据实践透明度方面存在的问题,并指出了加强隐私保护措施的必要性。

链接:

https://arxiv.org/abs/2408.13247

3. 去伪存真:利用执行反馈对生成的代码候选进行排序

简介:大语言模型(LLMs)如GPT-4、StarCoder和CodeLlama正在改变编程方式,通过自然语言描述自动生成代码。尽管如此,生成正确代码仍然具有挑战性。为了提高正确代码的生成率,开发者通常使用LLMs生成多个候选解决方案,然后进行代码排名,即从多个候选代码中选择正确的一个。现有的代码排名研究主要分为基于执行和非基于执行的方法。基于执行的方法虽然有效,但受限于高质量单元测试的稀缺和潜在的安全风险。而非基于执行的方法,如CodeRanker,主要依赖分类标签进行训练,难以捕捉细微错误和提供错误洞察。

为了克服这些限制,研究者提出了一种新的方法——RankEF。RankEF是一种创新的代码排名方法,它利用执行反馈并通过多任务学习整合代码分类与执行反馈生成。这种方法使模型能够在不执行代码的情况下,理解错误代码的原因,并区分正确与错误的解决方案。在三个代码生成基准上的实验显示,RankEF显著优于现有的CodeRanker,展现出在代码排名方面的高效性和准确性。

链接:

https://arxiv.org/abs/2408.13976

4. 调查贝叶斯垃圾邮件过滤器在检测经语言模型修改的垃圾邮件中的有效性

简介:垃圾邮件和网络钓鱼是网络安全的重大威胁,贝叶斯垃圾邮件过滤器如 SpamAssassin 是重要防御工具。但大语言模型的出现带来新挑战,因其强大、易获取且成本低,可能被用于制作复杂垃圾邮件逃避传统过滤器。研究者开发管道测试 SpamAssassin 对经语言模型修改邮件的有效性,结果显示其会将高达 73.7%的此类邮件误分类为合法邮件,而简单字典替换攻击成功率仅 0.4%。这凸显了经语言模型修改的垃圾邮件的重大威胁及成本效益。该研究为当前垃圾邮件过滤器的漏洞及网络安全措施的持续改进提供了关键见解。

链接:

https://arxiv.org/abs/2408.14293

5. 检测人工智能缺陷:针对语言模型内部故障的目标驱动攻击

简介:大语言模型(LLMs)在人工智能领域的重要性日益凸显,但这些模型在预训练语料中可能包含有害内容,导致生成不适当的输出。为了提高LLMs的安全性,研究人员探索了检测模型内部缺陷的方法。目前的研究主要集中在越狱攻击上,这些攻击通过构建对抗性内容来诱导模型产生意外响应。然而,这些方法依赖于提示工程,既耗时又需要特别设计的问题。

为了解决这些挑战,研究人员提出了一种新的攻击范式,即目标驱动的攻击,它专注于直接引出目标响应,而不是优化提示。研究中引入了名为ToxDet的LLM,作为有毒内容的检测器。ToxDet能够根据目标有毒响应生成可能的问题和初步答案,以诱导目标模型产生与提供含义相当的有毒响应。ToxDet通过与目标LLM交互并接收奖励信号进行训练,利用强化学习优化过程。尽管ToxDet主要针对开源LLMs,但经过微调后,它也可以转移到攻击如GPT-4o这样的黑盒模型,并取得了显著结果。在AdvBench和HH-Harmless数据集上的实验结果证明了该方法在检测目标LLMs生成有害响应倾向方面的有效性。这不仅揭示了LLMs的潜在漏洞,还为研究人员提供了加强模型抵御此类攻击的宝贵资源。

链接:

https://arxiv.org/abs/2408.14853

6. 参数高效的量化专家混合体与视觉 - 语言指令调优在半导体电子显微图像分析中的应用

简介:研究者指出半导体在基础模型中研究不足,需增强半导体器件技术。为此,他们推出了 sLAVA,一个针对半导体制造的小型视觉语言助手,专注于电子显微镜图像分析。采用师生范式,以 GPT-4 等基础视觉语言模型为教师,为 sLAVA 创建遵循指令的多模态数据,解决数据稀缺问题,可在预算有限的消费级硬件上进行任务,且企业能在自身基础设施内用专有数据安全微调框架以保护知识产权。严格实验表明,该框架超越传统方法,能处理数据偏移并实现高通量筛选,有助于半导体制造中的电子显微镜图像分析,为企业提供了一种有效的解决方案,也为半导体技术发展提供了新的思路和方法。

链接:

https://arxiv.org/abs/2408.15305

相关文章:

第67期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找…...

Chrome 浏览器插件获取网页 window 对象(方案三)

前言 最近有个需求,是在浏览器插件中获取 window 对象下的某个数据,当时觉得很简单,和 document 一样,直接通过嵌入 content_scripts 直接获取,然后使用 sendMessage 发送数据到插件就行了,结果发现不是这…...

动态规划-分割回文串ⅡⅣ

在本篇博客中将介绍分割回文串Ⅱ以及分割回文串Ⅳ这两个题目。 分割回文串Ⅱ 题目描述 给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文串。 返回符合要求的 最少分割次数 。 示例: 输入:s "aabac" 输…...

Python编码系列—Python项目维护与迭代:持续进化的艺术

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...

【鸿蒙开发工具报错】Build task failed. Open the Run window to view details.

Build task failed. Open the Run window to view details. 问题描述 在使用deveco-studio 开发工具进行HarmonyOS第一个应用构建开发时,通过Previewer预览页面时报错,报错信息为:Build task failed. Open the Run window to view details.…...

k8s集群部署:容器运行时

1. 卸载旧版本 Docker # 卸载旧版本的 Docker 组件 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine注释: 该命令会移除系统中现有的 Docker 及其相关组件&#xff0…...

PHP7 的内核结构

PHP7 是 PHP 语言的一个重要版本,带来了许多性能提升和语言特性改进。要深入了解 PHP7 的内核,我们需要探讨其设计和实现的关键方面,包括 PHP 的执行模型、内存管理、编译和优化过程等。 1. PHP7 的内核结构 1.1 执行模型 PHP 是一种解释型…...

JVM合集

序言: 1.什么是JVM? JVM就是将javac编译后的.class字节码文件翻译为操作系统能执行的机器指令翻译过程: 前端编译:生成.class文件就是前端编译后端编译:通过jvm解释(或即时编译或AOT)执行.class文件时跨平台的,jvm并不是跨平台的通过javap进行反编译2.java文件是怎么变…...

tomcat端口被占用解决方法

在安装目录的conf下修改server.xml文件,修改后保存重启即可...

全新的训练算法:Reflection 70B进入大众的视野

在2024年9月6日,大模型的圈子迎来了一位新成员——Reflection 70B,它横扫了MMLU、MATH、IFEval、GSM8K等知名的模型基准测试,完美超越了GPT-4o,同时也超越了Claude3.5 Sonnet成为了新的大模型之王,Reflection 70B到底是…...

静态标注rtk文件参数解析

目录 在静态标注中,rtk(Real-Time Kinematic)文件的主要作用 rtk文件包含几种类型数据 具体作用 具体示例 %RAWIMUSA #INSPVAXA $GPRMC 背景: 最近工作中涉及到静态标注 slam相关,因为初入门,对于rtk文件中有很多参数&…...

TensorFlow和PyTorch小知识

TensorFlow和PyTorch是当前最流行的两个开源机器学习库,它们都广泛用于研究和工业界的深度学习项目。下面是对它们的介绍: 1,TensorFlow - **开发背景:** TensorFlow最初由Google Brain Team开发,并于2015年11月开源…...

Java证书信息收集

1.Java二级 【NCRE 二级Java语言程序设计02】考试流程及二级Java大纲_java语言程序设计计算机二级-CSDN博客...

flink写入hudi MOR表

第一步:创建flink内存表从kafka读取数据: DROP TABLE IF EXISTS HUDI_KAFKA_DEBEZIUM_ZHANG; CREATE TABLE IF NOT EXISTS HUDI_KAFKA_DEBEZIUM_ZHANG( ID STRING comment 编码 ,NAME STRING comment 名称 ,PRIMARY KEY(RCLNT,RLDNR,RRCTY,RVERS,RYEAR,…...

智能工厂程序设计 之-2 (Substrate) :三个世界--“存在的意义”-“‘我’的价值的实现” 之2

Q13、我刚看了一下前门前面的讨论。有一段文字您的重新 理解一下。那就是: 对题目 的另一角度( “智能工厂的程序设计”的三个层次词 分别关注的问题 及其 解决 思路的描述)的解释: 三个不同层次(深度)&…...

概要设计例题

答案:A 知识点: 概要设计 设计软件系统的总体结构:采用某种方法,将一个复杂的系统按照功能划分成模块;确定每个模块的功能;确定模块之间的调用关系;确定模块之间的接口,即模块之间…...

注册表模式:使用注册表和装饰器函数的模块化设计

在现代软件开发中,模块化设计是提高代码可维护性和可扩展性的关键技术之一。本文将探讨如何使用注册表(Registry)和装饰器函数(Decorator Function)来实现模块化设计,提升代码的灵活性和可扩展性。 什么是…...

怎样将vue项目 部署在ngixn的子目录下

如果同一服务器的80端口下,需要部署两个或以上数量的vue项目,那么就需要将其中一个vue项目部署在根目录下,其他的项目部署在子目录下. 像这样的配置 访问根目录 / 访问灭火器后台管理,访问 /mall/ 访问商城的后台管理 那么商场的vue项目,这样配置,才能在/mall/下正常访问? 1…...

FPGA开发:Verilog数字设计基础

EDA技术 EDA指Electronic Design Automation,翻译为:电子设计自动化,最早发源于美国的影像技术,主要应用于集成电路设计、FPGA应用、IC设计制造、PCB设计上面。 而EDA技术就是指以计算机为工具,设计者在EDA软件平台上…...

哈希表,算法

一.什么是哈希表 哈希表是一种用于快速数据存取的数据结构。它通过哈希函数将键(key)映射到表中的一个位置,从而实现高效的插入、删除和查找操作。 二.哈希冲突 哈希冲突发生在多个键通过哈希函数映射到哈希表的同一位置时。由于哈希表的大…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...