当前位置: 首页 > news >正文

【Python机器学习】循环神经网络(RNN)——审察模型内部情况

Keras附带了一些工具,比如model.summary(),用于审察模型内部情况。随着模型变得越来越复杂,我们需要经常使用model.summary(),否则在调整超参数时跟踪模型内部的内容的变化情况会变得非常费力。如果我们将模型的摘要以及验证的测试结果记录在超参数调优日志中,那将对以后的工作非常有帮助。

我们甚至可以实现大部分工作的自动化,将一些枯燥的记录工作交给机器来完成:

model.compile('rmsprop','binary_crossentropy',metrics=['accuracy'])
model.summary()

这个循环神经网络相对较小,但是这里还是正在学习37551个参数,这对20000个训练样本来说需要更新的权重太多了。

在SimpleRNN层中,需要50个神经元,每个神经元都将接收输入(并对每个输入样本应用一个权重)。在一个循环神经网络中,每个时刻的输入都是一个词条。在本例中,词条由词向量表示,每个向量有300个元素长(300维)。每个神经元需要300个权重:300*50=15 000。

每个神经元也有一个偏置项,它的输入值总是1,所以可训练的权重:15000+50(偏置权重)=15050。

第一层第一时刻的权重数量为15050。现在这50个神经元中的每一个都将把它的输出输入网络的下一时刻。每个神经元接受完整的输入向量和完整的输出向量。在第一个时刻,还不存在来自输出的反馈,所以它的初始值是0向量,它的长度与输出向量的长度相同。

隐藏层中的每个神经元现在都有每个词条嵌入维度的权重,即300个权重,每个神经元也有1个偏置,在前一个时刻(或第一个t=0时刻的0)中,输出结果有50个权重。这50个权重是循环神经网络中的关键反馈步骤。这给了我们300+1+50=351*50个神经元得到351*50=17550。

17550个需要训练的参数。我们展开这个网络的400次。然而,这17550个参数在每次展开时都是相同的,并且在所有的反向传播计算完毕之前,它们都是相同的。对权重的更新发生在前向传播和后续反向传播序列的末尾。虽然我们给反向传播算法增加了复杂度,但是我们也因此没有去训练一个参数超过700万(17550*400)个的网络。如果每个展开的网络都有自己的权重,那么情况就会很糟糕。

总体来说,最后一次有20001个参数需要训练,这计算起来相对简单。在Flatten()层之后,输入是一个20000维的向量加入一个偏置输入,因为在输出层只有一个神经元,所以参数的总数是:

(20000个输入元素+1个偏置单元)*1个神经元=20001个参数。

这些数字在计算时间上可能会有一点误导,因为随时间反向传播算法有很多额外的步骤。计算时间不应该称为它的主要壁垒。循环网络在记忆能力方面的特殊优势是进入包括NLP或所有其他序列数据的更大世界的起点。

相关文章:

【Python机器学习】循环神经网络(RNN)——审察模型内部情况

Keras附带了一些工具,比如model.summary(),用于审察模型内部情况。随着模型变得越来越复杂,我们需要经常使用model.summary(),否则在调整超参数时跟踪模型内部的内容的变化情况会变得非常费力。如果我们将模型的摘要以及验证的测试…...

智能语音交互:人工智能如何改变我们的沟通方式?

在科技飞速发展的今天,人工智能(AI)已经渗透到我们生活的方方面面。其中,智能语音交互作为AI技术的一个重要分支,正以前所未有的速度改变着我们的沟通方式。从智能家居的控制到办公自动化的应用,再到日常交…...

vue3中动态引入本地图片的两种方法

方法一 <img width"10" height"10":src"/src/assets/nncs2/jiantou${index 1}.png" alt"" /> 推荐 简单好用 方法二 const getImg index > {const modules import.meta.glob(/assets/nncs2/**/*.{png,svg,jpg,jpeg}, { …...

Linux网络——socket编程与UDP实现服务器与客户机通信

文章目录 端口号TCP/UDP网络字节序socket的常见APIUDP实现服务器与客户机通信服务器客户机运行效果如下 端口号 我们说即便是计算机网络&#xff0c;他们之间的通信也仍然是进程间通信 那么要如何在这么多计算机中&#xff0c;找到你想要的那个进程呢 在网络中标识的唯一的计…...

大型语言模型中推理链的演绎验证

大语言模型&#xff08;LLMs&#xff09;在执行各种推理任务时&#xff0c;由于引入了链式推理&#xff08;Chain-of-Thought&#xff0c;CoT&#xff09;提示&#xff0c;显著受益。尽管CoT使模型产生更全面的推理过程&#xff0c;但其对中间推理步骤的强调可能会无意中引入幻…...

openharmony 应用支持常驻和自启动

本文环境: devEco studio 版本 4.0.0.600 SDK版本:3.2.12.5 full SDK 应用模型:Stage 功能简介: OpenHarmony支持包含ServiceExtensionAbility类型模块的应用配置常驻和自启动。 关于ServiceExtensionAbility其他的介绍可以参考官网:ServiceExtensionAbility(仅对…...

Winform中引入WPF控件后键盘输入无响应

引言 Winform中如何引入WPF控件的教程很多&#xff0c;对于我们直接通过ElementHost引入的直接显示控件&#xff0c;它是可以响应键盘输入消息的&#xff0c;但对于在WFP中弹出的窗体来说&#xff0c;此时是无法响应我们的键盘输入的。我们需要给它使能键盘输入。 1、使能键盘…...

多线程——死锁

死锁 在Java中使用多线程&#xff0c;就会有可能导致死锁问题。死锁会让程序一直卡住&#xff0c;程序不再往下执行。 我们只能通过中止并重启的方式来让程序重新执行。 这是我们非常不愿意看到的一种现象&#xff0c;我们要尽可能避免死锁的情况发生&#xff01; 死锁的原因…...

链路追踪可视化利器之火焰图

随着现代化技术的发展&#xff0c;为了能够保证 IT 系统的稳定性、高扩容性&#xff0c;企业往往采用分布式的方式来构建 IT 系统。但也正因为如此&#xff0c;IT 系统中涉及到的服务和组件可能被分布在不同的服务器、数据中心甚至不同的地理位置&#xff0c;这导致应用发生故障…...

C语言 ——— 条件编译指令实际用途

目录 前言 头文件被包含的方式 嵌套文件包含 使用条件编译指令规避头文件多次包含 还有一个编译指令&#xff0c;同样能做到以上功能 前言 条件编译指令多用于对头文件的定义和判断以及删除 头文件被包含的方式 本地文件包含&#xff08;也就是自己创建的头文件&#xff…...

备战软考Day01-计算机系统

1.数值及其转化 1.数值转化&#xff08;十进制&#xff09; 2.十进制推广 3.进制转化 4.数据表示 1.原码 2.反码 3.补码 4.移码 5.定点数 就是小数点的位置固定不变的数。小数点的位置通常有两种约定方式&#xff1a;定点整数(纯整数&#xff0c;小数点在最低有效数值位之后…...

从C语言过渡到C++

&#x1f4d4;个人主页&#x1f4da;&#xff1a;秋邱-CSDN博客☀️专属专栏✨&#xff1a;C &#x1f3c5;往期回顾&#x1f3c6;&#xff1a;单链表实现&#xff1a;从理论到代码-CSDN博客&#x1f31f;其他专栏&#x1f31f;&#xff1a;C语言_秋邱的博客-CSDN博客 目录 ​…...

Docker 的安装和使用

参考资料&#xff1a; 通俗易懂了解什么是docker?Docker 教程 | 菜鸟教程Ubuntu 22.04 安装 DockerDocker 超详细基础教程WSL2 支持 systemctl 命令systemd 和 systemctl 是什么&#xff1f;使用正确的命令重启 WSL 子系统Ubuntu 修改源镜像方法Docker 中出现 ‘/etc/resolv.…...

鸿蒙轻内核A核源码分析系列七 进程管理 (2)

往期知识点记录&#xff1a; 鸿蒙&#xff08;HarmonyOS&#xff09;应用层开发&#xff08;北向&#xff09;知识点汇总 轻内核A核源码分析系列一 数据结构-双向循环链表 轻内核A核源码分析系列二 数据结构-位图操作 轻内核A核源码分析系列三 物理内存&#xff08;1&#xff0…...

关于TypeScript使用讲解

TypeScript讲解 安装环境 1.安装node js 配置环境变量 2.在终端中 运行 npm i -g typescript typescript: 用于编译ts代码 提供了 tsc命令 实现了将 TS>>>> JS转换 验证: tsc -v 编译并运行 TS代码 1.创建ts文件&#xff08;TS文件为后缀名的文件&#xff0…...

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目&#xff1a; 题解&#xff1a; static const int MASK1 1 << 7; static const int MASK2 (1 << 7) (1 << 6);bool isValid(int num) {return (num & MASK2) MASK1; }int getBytes(int num) {if ((num & MASK1) 0) {return 1;}int n 0;in…...

Netty权威指南:Netty总结-编解码与序列化

第四章 TCP粘包/拆包问题 4.1 TCP 粘包/拆包 TCP是流协议&#xff0c;也就是没有界限的的一串数据&#xff0c;底层并不知道上层业务数据的具体含义&#xff0c;也就是说一个完整的包可能会被拆分成多个包进行发送&#xff0c;也可能把几个小包封装成一个大的数据包发送。这就…...

FIDAVL:基于视觉语言模型的假图像检测与归因 !

FIDAVL:基于视觉语言模型的假图像检测与归因 &#xff01; 这份完整版的大模型 AI 学习资料已经上传CSDN&#xff0c;朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】 作者提出了FIDAVL&#xff1a;使用视觉语言模型进行虚假图像检测。FIDAVL是一…...

如何通过海外云手机提升运营效率

随着技术的不断进步&#xff0c;市场上出现了越来越多的提高跨国电商运营效率的应用&#xff0c;海外云手机就是其中一个。海外云手机的优势体现在多个方面&#xff0c;那么如何通过使用海外云手机来提升运营效率&#xff1f;可以从以下几个方面了解。 首先&#xff0c;海外云手…...

数据库4个范式的说明

在数据库设计中&#xff0c;范式&#xff08;Normal Form&#xff09;用于消除冗余和异常&#xff0c;确保数据一致性。以下是第一范式、第二范式、第三范式和BCNF&#xff08;Boyce-Codd Normal Form&#xff0c;即第四范式&#xff09;的示例说明&#xff1a; 1. 第一范式&a…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...