当前位置: 首页 > news >正文

【OpenCV2.2】图像的算术与位运算(图像的加法运算、图像的减法运算、图像的融合)、OpenCV的位运算(非操作、与运算、或和异或)

1 图像的算术运算
1.1 图像的加法运算
1.2 图像的减法运算
1.3 图像的融合
2 OpenCV的位运算
2.1 非操作
2.2 与运算
2.3 或和异或

1 图像的算术运算

1.1 图像的加法运算

  • add opencv使用add来执行图像的加法运算

图片就是矩阵, 图片的加法运算就是矩阵的加法运算, 这就要求加法运算的两张图shape必须是相同的.

# 图片加法
import cv2cat = cv2.imread('./cat.jpeg')
dog = cv2.imread('./dog.jpeg')# 加法要求两个图片大小一致
print(cat.shape)
print(dog.shape)
# 把猫的图片变小
# 注意坑. opencv中resize中传递新的宽度和高度, 先宽度再高度, 所有是先列后行, 和shape的输出反了.
new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
# 和单个数字运算, 超过255 会被截断, 相当于 % 256
print(new_cat[0:5, 0:5])
print(new_cat[0:5, 0:5] + 100) 
cv2.imshow('cat_dog', np.hstack((new_cat, dog)))
# 加法, 加法的效果是加起来如果超过255, 统一变成255
new_img = cv2.add(new_cat, dog)
print(new_img[0:5, 0:5])
cv2.imshow('cat_dog', np.hstack((new_cat, dog, new_img)))cv2.waitKey(0)
cv2.destroyAllWindows()

请添加图片描述

1.2 图像的减法运算

  • subtract

  • opencv使用subtract来执行图像的减法运算, 图像对应位置的元素相减, 如果减完小于0, 统一变成0.

  # 图片减法import cv2cat = cv2.imread('./cat.jpeg')dog = cv2.imread('./dog.jpeg')# 加法要求两个图片大小一致print(cat.shape)print(dog.shape)# 把猫的图片变小# 注意坑. opencv中resize中传递新的宽度和高度, 先宽度再高度, 所有是先列后行, 和shape的输出反了.new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))# 减法new_img = cv2.subtract(new_cat, dog)print(new_cat[0:5, 0:5], dog[0:5, 0:5])print(new_img[0:5, 0:5])cv2.imshow('cat_dog', np.hstack((new_cat, dog, new_img)))cv2.waitKey(0)cv2.destroyAllWindows()

请添加图片描述

  • 同样的还有乘法, 除法运算. cv2.mutiply, cv2.divide, 原理是类似的.

1.3 图像的融合

  • cv2.addWeighted(src1, alpha, src2, beta, gamma)

  • 图片的融合操作相当于对图片进行线性运算 w1* x1 + w2 * x2 + b. 其中alpha是第一个权重参数, beta是第二个权重参数, gamma是偏差.

    import cv2cat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
    # 相当于res = new_cat * 0.4 + dog * 0.6 + 0
    res = cv2.addWeighted(new_cat, 0.4, dog, 0.6, 0)cv2.imshow('cat_dog', np.hstack((new_cat, dog, res)))cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2 OpenCV的位运算

2.1 非操作

  • bitwise_not(img) 非操作的效果就相当于是用 255 - img

    import cv2
    import numpy as npcat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')cat_not = cv2.bitwise_not(cat)
    cat_not_not = cv2.bitwise_not(cat_not)
    cv2.imshow('not', np.hstack((cat, cat_not, cat_not_not)))
    print(cat[:3, :3])
    print(cat_not[:3, :3])
    print(cat_not_not[:3, :3]cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2.2 与运算

  • bitwise_and(img1, img2) 与运算, 图片对应位置元素进行与操作. 表现出来的效果就是黑和黑与还是黑, 白和白与还是白.

    import cv2
    import numpy as npcat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
    cat_and_dog = cv2.bitwise_and(new_cat, dog)
    cv2.imshow('not', np.hstack((new_cat, cat_and_dog)))
    print('cat:', new_cat[:3, :3])
    print('-----------')
    print('dog:', dog[:3, :3])
    print('-----------')
    print(cat_and_dog[:3, :3])cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2.3 或和异或

  • bitwise_or 或运算 对应元素做或运算

  • bitwise_xor 异或运算 对应元素做异或运算

    import cv2
    import numpy as np#创建一张图片
    img = np.zeros((200,200), np.uint8)
    img2 = np.zeros((200,200), np.uint8)img[20:120, 20:120] = 255
    img2[80:180, 80:180] = 255#new_img = cv2.bitwise_bit(img)
    #new_img = cv2.bitwise_and(img, img2)
    #new_img = cv2.bitwise_or(img, img2)
    new_img = cv2.bitwise_xor(img, img2)cv2.imshow('new_img', new_img)
    cv2.imshow('img', img)
    cv2.imshow('img2', img2)
    cv2.waitKey(0)

    请添加图片描述

相关文章:

【OpenCV2.2】图像的算术与位运算(图像的加法运算、图像的减法运算、图像的融合)、OpenCV的位运算(非操作、与运算、或和异或)

1 图像的算术运算 1.1 图像的加法运算 1.2 图像的减法运算 1.3 图像的融合 2 OpenCV的位运算 2.1 非操作 2.2 与运算 2.3 或和异或 1 图像的算术运算 1.1 图像的加法运算 add opencv使用add来执行图像的加法运算 图片就是矩阵, 图片的加法运算就是矩阵的加法运算, 这就要求加…...

ChatGPT 3.5/4.0使用手册:解锁人工智能的无限潜能

1. 引言 在人工智能的浪潮中,ChatGPT以其卓越的语言理解和生成能力,成为了一个革命性的工具。它不仅仅是一个聊天机器人,更是一个能够协助我们日常工作、学习和创造的智能伙伴。随着ChatGPT 3.5和4.0版本的推出,其功能和应用范围…...

E32.【C语言 】练习:蓝桥杯题 懒羊羊字符串

1.题目 【问题描述】 “懒羊羊”字符串是一种特定类型的字符串,它由三个字符组成,具有以下特点: 1.字符串长度为 3. 2.包含两种不同的字母。 3.第二个字符和第三个字符相同 换句话说,“懒羊羊”字符串的形式应为 ABB,其中A和B是不…...

Linux 网络基础概念

文章目录 一、初始协议1、理解2、协议分层3、软件分层4、OSI七层模型5、TCP/IP五层模型 二、再识协议1、为什么要有TCP/IP协议2、什么是TCP/IP协议3、TCP/IP协议与操作系统的关系(宏观上,怎么实现的) 三、网络传输基本流程1、mac地址2、TCP/I…...

【题目】MySQL选择题

来源:MySQL专项练习选择题 1.有一个User用户表,要删除整张表(指完全删除表数据和结构),下面正确的MySQL语句是: A.DELETE TABLE User; B.DROP TABLE User; C.TRUNCATE TABLE User; D.DELETE FROM User …...

自然语言处理系列六十三》神经网络算法》LSTM长短期记忆神经网络算法

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十三神经网络算法》LSTM长短期记忆神经网络算…...

亚马逊IP关联及其解决方案

在电子商务领域,亚马逊作为全球领先的在线购物平台,吸引了众多商家和个人的参与。然而,随着业务规模的扩大,商家在使用亚马逊服务时可能会遇到IP关联的问题,这不仅影响账户的正常运营,还可能带来一系列不利…...

Definition and Detection of Defects in NFT Smart Contracts论文解读、复现

背景知识\定义 NFT 是数字或物理资产所有权的区块链表示。不仅限于数字图片,视频和画作等艺术品也可以转化为 NFT 进行交易。近年来受到广泛关注,2021 年 NFT 交易额达到约 410 亿美元。 智能合约 是在区块链上运行的图灵完备程序。支持各种去中心化…...

Neo4j图数据库

文章目录 一、Neo4J相关介绍1.为什么需要图数据库方案1:Google方案2:Facebook 2.特定和优势3.什么是Neo4j4.Neo4j数据模型图论基础属性图模型Neo4j的构建元素 5.软件安装 二、CQL语句1.CQL简介2.CREATE 命令3.MATCH 命令4.RETURN 子句5.MATCH和RETURN6.C…...

k8s API资源对象

API资源对象Deployment 最小的资源是pod,deployment是多个pod的集合(多个副本实现高可用、负载均衡等)。 使用yaml文件来配置、部署资源对象。 Deployment YAML示例: vi ng-deploy.yaml apiVersion: apps/v1 kind: Deployment…...

GB/T28181规范解读之编码规则详解

GB/T28181,即《安全防范视频监控联网系统信息传输、交换、控制技术要求》,是我国安防行业的重要标准之一。该标准详细规定了城市监控报警联网系统中信息传输、交换、控制的互联结构、通信协议结构,以及传输、交换、控制的基本要求和安全性要求…...

Vue封装的过度与动画(transition-group、animate.css)

目录 1. Vue封装的过度与动画1.1 动画效果11.2 动态效果21.3 使用第三方动画库animate.css 1. Vue封装的过度与动画 作用:在插入、更新或移除DOM元素时,在合适的时候给元素添加样式类名 1.1 动画效果1 Test1.vue: transition内部只能包含一个子标签。…...

免费云服务器申请教程

免费云服务器的申请流程通常包括以下几个步骤,但请注意,不同云服务提供商的具体步骤可能略有不同。以下是一个通用的申请流程: 一、选择合适的云服务提供商 首先,需要选择一家提供免费云服务器服务的云服务提供商。 免费云服务器汇…...

Spring Cloud Gateway中的常见配置

问题 最近用到了Spring Cloud Gateway,这里记录一下这个服务的常见配置。 spring:data:redis:host: ${REDIS_HOST:xxx.xxx.xxx.xxx}port: ${REDIS_PORT:2345wsd}password: ${REDIS_PASS:sdfsdfgh}database: ${REDIS_DB:8}session:redis:flush-mode: on_savenamespa…...

SelectDB 多计算集群核心设计要点揭秘与场景应用

需求起源 SelectDB 设计多计算集群架构初衷主要源于两类典型的使用场景: 写入与读取隔离:传统数仓架构中,数据的写入和读取在同一个计算集群,当遇到业务写入高峰期或突增的写入压力时,容易因资源相互抢占影响查询服务…...

Docker 清理和查看镜像与容器占用情况

查看容器占用磁盘大小 docker system df 查看单个image、container大小: docker system df -v 清理所有废弃镜像与Build Cache docker system prune -a...

如何在Android 12 aosp系统源码中添加三指下滑截图功能

如何在Android 12 aosp系统源码中添加三指下滑截图功能 系统中截图api非常简单: private static ScreenshotHelper sScreenshotHelper;sScreenshotHelper new ScreenshotHelper(mContext);//调用 sScreenshotHelper.takeScreenshot(WindowManager.TAKE_SCREENSHO…...

使用SQL语句查询MySQL数据表

6.1 创建单表基本查询 1&#xff0e;Select 语句的语法格式及其功能 &#xff08;1&#xff09;Select 语句的一般格式。 Select < 字段名称或表达式列表 > From < 数据表名称或视图名称 > [ Where < 条件表达式 > ] [ Group By < 分组的字段名称…...

【AI绘画、换脸、写作、办公】从零开始:使用AIStarter启动器发布AI应用

随着人工智能技术的快速发展&#xff0c;越来越多的开发者希望通过自己的创意来构建和分享AI应用。AIStarter启动器正是为此而设计的一个强大工具&#xff0c;它可以帮助开发者轻松打包并发布自己的AI应用项目。本文将详细介绍如何使用AIStarter启动器来实现这一目标。 注册账…...

eeprom使用 cubemx STM32F407ZGT6【IIC驱动AT24C02】

存储器的简单介绍 ROM&#xff08;只读存储器&#xff09;、RAM&#xff08;随机存取存储器&#xff09;、Flash&#xff08;闪存&#xff09;、和EEPROM&#xff08;电可擦可编程只读存储器&#xff09;是四种不同类型的存储介质。ROM用于存储固件或永久数据&#xff0c;不易…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...