当前位置: 首页 > news >正文

深度学习-物体检测YOLO(You only look once)

目录

一:YOLO算法的网络结构

 流程

1.图像分割

2.图片在网格中的处理

3.非极大值抑制

二:训练

三:分类误差

 四:与Faster R-CNN对比


一:YOLO算法的网络结构

GooleNet+4个卷积+2个全连接层

 流程

输入原始图片resize到448x448,经过卷积网络之后讲图片输出成了一个7x7x30的结构

步骤;

1.输入一个图片,将整个图片划分为SxS的网格

2.对于每个网格,我们都预测B个边框(与前几章说的候选框相似,这里是对每个网格)

3.进行NMS筛选,筛选每个边框的概率以及每个边框的loU(交并比)

4.剔除概率低的和loU小的边框

1.图像分割

yolo的cnn网络将输入的图片分割成SxS网格,然后每个单元格负责去检测哪些中心点落在该格子内的目标,可以看到狗这个目标的中心点落在左下角一个单元内,那么该单元格负责预测这个狗。

分割流程:在输入的图片上放一个N*N的网格,那么图片就被分为了N*N

1.使用图像分类和定位算法(image classification and Localization algorithm)然后将算法应用到N*N格子上

2.然后对每个小网格定义一个5+k(k为预测类别个数)维向量的目标标签

3.yolo算法使用的是取目标对象边框中心点的算法,即考虑边框的中心点在哪个格子中

2.图片在网格中的处理

每个单元格会预测B个边界框(bounding bbox)以及边框的置信度。置信度指的是边界框含有目标的可能性大小(object)和边界框的准确度(IOUtruthpred),准确度是用预测框与实际框的loU(交并比)计算的。置信度计算为:object*IOUtruthpred。

每个边界框的大小和位置使用4个值来表示:(x,y,w,h),x,y是边界框的中心坐标,而w和h是边界框的宽和高。中心坐标的预测值x,y是相对于每个单元格左上角坐标点的偏移值,并且单位是相对于单元格大小的。而边界框的w和h预测值是相对于整个图片的宽与高的比例。

分类问题:对于每一个单元个还要给出预测类别的概率值,由该单元格复杂预测的边界框目标属于各个类别的概率。但这些概率值是在各个边界框置信度下的条件概率classi object。把类别概率预测值与边界框类别置信度计算出来后相乘。边界框类别置信度表示的是该边界框中目标属于各个类别的可能性大小以及边界框匹配目标的好坏。

3.非极大值抑制

从所以的检测框中找到置信度最大的那个框,然后和其他的框计算IOU,如果计算的值小于某一个阈值,就剔除。

二:训练

1.数据预处理。数据预处理旨在增强训练数据多样性,进而提升检测网络的检测能力。常用的数据增强手段有翻转、缩放、均值归一化和色调变化等

2.检测网络。检测网络一般包括基础骨干、特征融合及预测网络3部分。目标检测器的基础骨干通常采用用于图像分类的深度卷积网络,如AlexNet 、VGGNet、ResNet和DenseNet等。近期,研究人员开始采用基于Transformer的基础骨干网络,如ViT(vision transformer)、Swin和PVT(pyramid vision transformer)等。通常将大规模图像分类数据库ImageNet上的预训练权重作为检测器骨干网络的初始权重

特征融合主要是对基础骨干提取的特征进行融合,用于后续分类和回归。常见的特征融合方式是特征金字塔结构。

最后,预测网络进行分类和回归等任务。在两阶段目标检测方法中,分类和回归通常采用全连接的方式,而在单阶段的方法中,分类和回归等通常采用全卷积的方式。与此同时,检测器通常还需要一些初始化,如锚点框初始化、角点初始化和查询特征初始化等。

3.标签分配与损失计算。标签分配主要是为检测器预测提供真实值。在目标检测中,标签分配的准则包括交并比(intersection over union,IoU)准则、距离准则、似然估计准则和二分匹配等。交并比准则通常用于基于锚点框的目标检测方法,根据锚点框与物体真实框之间的交并比将锚点框分配到对应的物体。距离准则通常用于无锚点框的目标检测方法,根据点到物体中心的距离将其分配到对应的物体。似然估计准则和二分匹配通常基于分类和回归的联合损失进行最优标签分配。基于标签分类的结果,采用损失函数计算分类和回归等任务的损失,并利用反向传播算法更新检测网络的权重。常用的分类损失函数有交叉熵损失函数、聚焦损失函数等,而回归损失函数有L1损失函数、平滑L1损失函数、交并比IoU损失函数、GIoU (generalized IoU)损失函数(Rezatofighi等,2019)和CIoU(complete-IoU)损失函数等

三:分类误差

 四:与Faster R-CNN对比

Faster R-CNN利用RPN网络与真实值调整了候选区域,然后再进行候选区域和卷积特征结果映射的特征向量的处理来通过与真实值优化网络预测结果。而这两步在YOLO当中合并成了一个步骤,直接网络输出预测结果进行优化。  所以经常也会称之为YOLO算法为直接回归法代表。YOLO的特点就是快

优点:速度块

缺点:1.准确率不高,YOLO对相互靠的很近的物体(挨在一起且中点都落在同一个格子上的情况),还有很小的群体检测效果不好,这是因为一个网格中只预测了两个框

相关文章:

深度学习-物体检测YOLO(You only look once)

目录 一:YOLO算法的网络结构 流程 1.图像分割 2.图片在网格中的处理 3.非极大值抑制 二:训练 三:分类误差 四:与Faster R-CNN对比 一:YOLO算法的网络结构 GooleNet4个卷积2个全连接层 流程 输入原始图片resize到…...

redisson中的分布式锁

我的博客大纲 我的后端学习大纲 a.redisson概述: 1.Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)2.redisson介绍官方文档地址:3.Redisson它不仅提供了一系列的分布式的Java常用对象,还…...

如何将镜像推送到docker hub

前言 这一篇应该是最近最后一篇关于docker的博客了,咱来个有始有终,将最后一步——上传镜像给他写完,废话不多说,直接进入正题。 登录 首先需要确保登录才能推送到你的仓库中去,在终端输入docker login,输入用户名和…...

GO 匿名函数

GO 匿名函数 文章目录 GO 匿名函数1. **回调函数**2. **goroutine 中的操作**3. **延迟操作(defer)**4. **内联处理逻辑**5. **闭包**6. **过滤、映射等函数式编程风格**7. **测试中的临时逻辑**8. **短期存在的逻辑操作**总结 匿名函数在 Go 语言中的使…...

JuiceFS 在多云架构中加速大模型推理

在大模型的开发与应用中,数据预处理、模型开发、训练和推理构成四个关键环节。本文将重点探讨推理环节。在之前的博客中,社区用户 BentoML 和贝壳的案例提到了使用 JuiceFS 社区版来提高模型加载的效率。本文将结合我们的实际经验,详细介绍企…...

【DCL】Dual Contrastive Learning for General Face Forgery Detection

文章目录 Dual Contrastive Learning for General Face Forgery Detectionkey points:贡献方法数据视图生成对比学习架构实例间对比学习实例内对比学习总损失函数实验实验细节定量结果跨数据集评估跨操作评估消融实验可视化Dual Contrastive Learning for General Face Forgery…...

https的特点

https的特点 优点:缺点:HTTPS是如何保证安全的? 优点: 使用HTTPS协议可以认证用户和服务器,确保数据发送到正确的客户端和服务器;使用HTTPS协议可以进行加密传输、身份认证,通信更加安全、防止…...

〖open-mmlab: MMDetection〗解析文件:mmdet/models/losses/cross_entropy_loss.py

目录 深入解析MMDetection中的CrossEntropyLoss及其应用1. 概述2. 核心函数2.1 cross_entropy2.1.1 函数定义和参数说明2.1.2 函数体2.1.3 总结 2.2 binary_cross_entropy2.2.1 _expand_onehot_labels函数2.2.2 binary_cross_entropy函数2.2.3 总结 2.3 mask_cross_entropy2.3.…...

【PyTorch单点知识】torch.nn.Embedding模块介绍:理解词向量与实现

文章目录 0. 前言1. 基础介绍1.1 基本参数1.2 可选参数1.3 属性1.4 PyTorch源码注释 2. 实例演示3. embedding_dim的合理设定4. 结论 0. 前言 按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但…...

Jedis 操作 Redis 数据结构全攻略

Jedis 操作 Redis 数据结构全攻略 一 . 认识 RESP二 . 前置操作2.1 创建项目2.2 关于开放 Redis 端口的问题2.2.1 端口转发?2.2.2 端口配置 2.3 连接到 Redis 服务器 三 . 通用命令3.1 set 和 get3.2 exists 和 del3.3 keys3.4 expire、ttl、type 三 . string 相关命令3.1 mse…...

ctf.show靶场ssrf攻略

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 web351 解析:post传入url参数他就会访问。 解法: hackbar传入url参数写入https://127.0.0.1/flag.php web352 解析:post传入url参数,不能是127.0.0.1和localhost 解法:缩写127.1传入 web353 解析…...

在 PyTorch 中,如何使用 `pack_padded_sequence` 来提高模型训练的效率?

在PyTorch中,pack_padded_sequence 是一个非常有用的函数,它可以用来提高模型训练的效率,特别是在处理变长序列数据时。这个函数的主要作用是将填充后的序列数据打包,以便循环神经网络(RNN)可以更高效地处理…...

Gossip协议

主要用在Redis Cluster 节点间通信 Gossip协议,也称为流行病协议(Epidemic Protocol),是一种在分布式系统中用于信息传播和故障探测的算法。 一、工作原理 随机选择传播对象 每个节点会定期随机选择一些其他节点作为传播对象。这…...

数据结构————双向链表

内存泄漏: 内存泄漏(Memory Leak)是指程序中已动态分配的内存由于某种原因程序未释放或无法释放,导致系统内存的浪费,严重时会导致程序运行缓慢甚至崩溃。这种情况在长时间运行的程序或大型系统中尤为常见&#xff0c…...

55 - I. 二叉树的深度

comments: true difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9855%20-%20I.%20%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E6%B7%B1%E5%BA%A6/README.md 面试题 55 - I. 二叉树的深度 题目描述 输入一棵二叉树的根节点…...

Redis——初识Redis

初识Redis Redis认识Redis 分布式系统单机架构为什么要引入分布式理解负载均衡数据库的读写分离引入主从数据库 引入缓存数据库分库分表业务拆分——微服务常见概念了解 Redis背景介绍特性应用场景Redis不能做的事情Redis客户端redis客户端的多种形态 Redis 认识Redis 存储数…...

Xshell or Xftp提示“要继续使用此程序,您必须应用最新的更新或使用新版本”

Xshell提示“要继续使用此程序,您必须应用最新的更新或使用新版本”,笔者版本是xshell 6 方法一:更改系统时间 对于Windows 10用户,首先找到系统日期,右键点击并选择“调整时间/日期”。将日期设定为上一年。完成调整后&#x…...

table用position: sticky固定多层表头,滑动滚动条border边框透明解决方法

问题:我发现,这个上下滑动有内容经过就会出现如图的情况。 解决的方法:用outline(轮廓)替代border,以达到我们想要的样式。 outline主要是在元素边框的外围设置轮廓,outline不占据空间,绘制于…...

基于飞桨paddle2.6.1+cuda11.7+paddleRS开发版的目标提取-道路数据集训练和预测代码

基于飞桨paddle2.6.1cuda11.7paddleRS开发版的目标提取-道路数据集训练和预测代码 预测结果: 预测影像: (一)准备道路数据集 下载数据集地址: https://aistudio.baidu.com/datasetdetail/56961 mass_road.zip …...

数学建模笔记—— 整数规划和0-1规划

数学建模笔记—— 整数规划和0-1规划 整数规划和0-1规划1. 模型原理1.1 基本概念1.2 线性整数规划求解1.3 线性0-1规划的求解 2. 典型例题2.1 背包问题2.2 指派问题 3. matlab代码实现3.1 背包问题3.2 指派问题 整数规划和0-1规划 1. 模型原理 1.1 基本概念 在规划问题中&am…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...