R语言统计分析——功效分析2(t检验,ANOVA)
参考资料:R语言实战【第2版】
1、t检验
对于t检验,pwr.t.test()函数提供了许多有用的功效分析选项,如下:
pwr.t.test(n=,d=,sig.level=,power=,type=,alternative=)
其中,n为样本大小;
d为效应值,即标准化的均值之差。
sig.level表示显著性水平,默认为0.05;
power:为功效水平;
type指检验类型:双样本t检验("two.sample")、单样本t检验("one.sample")、配对t检验("paired"),默认为双样本t检验;
alternative:指统计检验是双侧检验("two.sided")还是单侧检验("less"或"greater"),默认为双侧检验。
现在我们要进行一项看手机对驾驶反应时间的实验,假定将使用双尾独立样本t检验来比较两种情况下驾驶员的反应时间均值:
如果我们根据过去的经验知道反应时间有1.25s的标准偏差,并认定反应时间1s的差距是巨大差异,那么在这个研究中,可设定要检验的效应值为d=1/1.25=0.8或更大。另外,如果差异存在,我们希望有90%的把握检测到它,由于随机变异性的存在,我们也希望有95%的把握不会误报差异显著。这时,对于该研究需要多少受试者呢?
# 加载pwr包
library(pwr)
# t检验功效分析
pwr.t.test(d=0.8,sig.level = 0.05,power=0.9,type="two.sample",alternative = "two.sided")
结果表明:每组中沃恩需要34个受试者(共68人),这样才能保证有90%的把握检测到0.8的效应值,并且最多5%的可能性会报差异存在。
下面变化一下问题:假定在比较这两种情况时,我们想检测到总体均值0.5个标准偏差的差异,并且将误报差异的几率限制在1%以内。此外,我们能获得的受试者只有40人。那么在该研究中,我们能检测到这么大总体均值差异的概率是多少?分析如下:
pwr.t.test(n=20,d=0.5,sig.level = 0.01,type="two.sample",alternative = "two.sided")
结果表明:在0.01的先验显著性水平下,每组20个受试者(共40个),因变量的标准差为1.25s,有最多14%的可能性断言差值为0.625s或者不显著(d=0.5=0.625/1.25)。换句话来说,我们将有86%的可能性错过我们要寻找的效应值。因此,可以可能需要慎重考虑要投入到该研究中的时间和精力。
当是不等样本的t检验时,可用函数:
pwr.r2n.test(n1=,n2=,d=,sig.level=,power=,alternative=)
2、方差分析
pwr.anova.test()函数可以对平衡单因素方差分析进行功效分析。格式为:
pwr.anova.test(k=, n=, f=, sig.level=, power=)
其中,k是组的个数,n是各组中的样本大小。
对于单因素方差分析,效应值通过f来衡量。(其中,
,ni=组i的观测数目,N=总观测数目,μi=组i的均值,μ=总体均值,σ2=组内误差方差)
现在对五个组做单因素方差分析,要达到0.8的功效,效应值为0.25,并选择0.05的显著性水平,计算各组需要的样本大小。代码如下:
# 加载pwr包
library(pwr)
# anova功效分析
pwr.anova.test(k=5,f=0.25,power=0.8,sig.level=0.05
)
结果表明:总样本大小为5×39=195。注意,本例中需要估计在同方差时五个组的均值。
相关文章:

R语言统计分析——功效分析2(t检验,ANOVA)
参考资料:R语言实战【第2版】 1、t检验 对于t检验,pwr.t.test()函数提供了许多有用的功效分析选项,如下: pwr.t.test(n,d,sig.level,power,type,alternative) 其中,n为样本大小; d为效应值,即…...
android 侧滑返回上一界面备忘
ParfoisMeng/SlideBack: 无需继承的Activity侧滑返回库 类全面屏返回手势效果 仿“即刻”侧滑返回 (github.com)...
golang学习笔记18——golang 访问 mysql 数据库全解析
推荐学习文档 golang应用级os框架,欢迎star基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总golang学习笔记01——基本数据类型golang学习笔记02——gin框架及基本原理golang学习笔记03——gin框架的核心数据结构golang学…...
苹果账号登录后端验证两种方式 python2
import time import jwt import requests import json import base64def decode_jwt(jwt_token):try:h,p,s jwt_token.split(.)except:return {},{},{},"","",""header json.loads(base64.urlsafe_b64decode(h )) # 可能需要调整填充pa…...

FlinkCDC 3.2.0 新增优点 Pattern Replacement in routing rules
新增优点:Pattern Replacement in routing rules flinkcdc 3.2.0版本相较于3.1.0版本,避免了多表多sink多次写 route 路由的麻烦,类似于统一前后缀的形式多表多sink,通过<>正则,大大减少了书写 官网࿱…...

《 C++ 修炼全景指南:六 》深入探索 C++ 标准库中的 stack 与 queue 容器适配器
1、引言 1.1、容器适配器的概念与应用 容器适配器(Container Adapters)是 C 标准库提供的一种特殊容器,它不是一种独立的容器,而是对其他标准容器的封装,用来实现特定的数据结构如栈(stack)和…...
高级java每日一道面试题-2024年9月07日-JVM篇-说一下类加载的执行过程?
如果有遗漏,评论区告诉我进行补充 面试官: 说一下类加载的执行过程? 我回答: 在Java中,类的加载是一个重要的过程,它是由Java虚拟机(JVM)的类加载器系统负责的。类加载的过程不仅仅包括加载类的字节码到内存中,还包…...
笔试强训day09
添加逗号 import sysa list(input())[::-1] s "" cnt 0 for v in a:cnt 1s vif cnt%30:s , print(s.rstrip(,)[::-1])跳台阶 import sys import functools functools.cache def dfs(u):if u1 or u2:# print(f"u {u}")return ureturn dfs(u-1)dfs(…...
软件测试中的黑盒测试方法,包括其定义、目的及主要步骤。
黑盒测试(Black Box Testing)是一种软件测试方法,它侧重于软件的功能性需求验证,而不考虑程序内部结构或代码实现细节。这种方法是从最终用户的角度出发,检查系统是否按照规格说明书的要求工作。黑盒测试的主要目的是验…...
Shell脚本计算π的近似值
计算π的公式很多,本文使用“π的莱布尼茨公式”来计算π的近似值,对应的公式如下: http://upload.wikimedia.org/math/9/e/8/9e804b8a1a11e442be93fed1d52205a9.png 由此我们可以得到求解π的公式为:π=4*(1-(1/3)+(1/5)-(1/7)+(1/9)...) 下面是在linux下使用shell脚本命令…...
进程间通信之消息队列
作用 进程间通信 特点 1 、消息队列中的消息是有类型的。 类型 : 自定义的结构体 , 第一个成员必须是 long 型的 . 表示为该消息的类型 如 : typedef struct 结构体名称 { long type; // 消息的正文 char name[50]; char sex[10]; int age; ... } 别名 ; 2 、消息队…...
人生苦短我用Python 5-xlwings自动调整表格
人生苦短我用Python 5-xlwings自动调整表格 前言依赖主要类App类Books类Sheet 类 示例代码 前言 使用pandas库openpyxl库实现了csv与excel文件的互相转换,csv转excel后若数据超出了单元格的宽度,部分数据无法完整显示。需要手动打开Excel文件࿰…...

移动跨平台框架Flutter详细介绍和学习线路分享
Flutter是一款移动应用程序SDK,一份代码可以同时生成iOS和Android两个高性能、高保真的应用程序。 Flutter目标是使开发人员能够交付在不同平台上都感觉自然流畅的高性能应用程序。我们兼容滚动行为、排版、图标等方面的差异。 在全世界,Flutter正在被越…...
线性代数基础:向量、矩阵、张量及其在机器学习中的应用详解
线性代数基础:向量、矩阵、张量及其在机器学习中的应用详解 线性代数基础:向量、矩阵、张量及其在机器学习中的应用详解一、向量 (Vectors)1. 向量的定义2. 向量在机器学习中的应用3. 向量空间 二、矩阵 (Matrices)1. 矩阵的定义2. 矩阵在机器学习中的应…...
Dockerfile中的RUN、CMD、ENTRYPOINT指令区别
RUN在构建过程中在镜像中执行命令。CMD容器创建时的默认命令。(可以被覆盖)ENTRYPOINT容器创建时的主要命令。(不可被覆盖) 指令介绍 1.RUN 在构建过程中在镜像中执行命令,是在 docker build中执行 2.CMD 作用&am…...

css grid布局属性详解
Grid布局 前言一、认识Grid1.1容器和项目1.2行和列1.3单元格和网格线 二、容器属性2.1.grid-template-columns与grid-template-rows属性2.1.1 直接使用长度单位比如px2.1.2 使用百分比 %2.1.3 使用repeat函数2.1.4 按比例划分 fr 关键字2.1.5 自动填充 auto 关键字2.1.6 最大值…...

Tranformer分布式特辑
随着大模型的发展,如何进行分布式训练也成了每位开发者必备的技能。 1. 单机训练 CPU OffloadingGradient Checkpointing 正向传播时,不存储当前节点的中间结果,在反向传播时重新计算,从而起到降低显存占用的作用 Low Precision…...
【Moveit2官方教程】使用 MoveIt Task Constructor (MTC) 框架来定义和执行一个机器人任务
#include <rclcpp/rclcpp.hpp> // ROS 2 的核心库 #include <moveit/planning_scene/planning_scene.h> // MoveIt 规划场景相关的头文件 #include <moveit/planning_scene_interface/planning_scene_interface.h> // MoveIt 规划场景接口 #include <m…...

使用docker配置wordpress
docker的安装 配置docker yum源 sudo yum install -y yum-utils sudo yum-config-manager \ --add-repo \ http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo下载最新版本docker sudo yum install -y docker-ce docker-ce-cli containerd.io docker-buildx-…...
JVM字节码
JVM字节码详解 引言 JVM(Java Virtual Machine,Java虚拟机)字节码是一种中间代码,主要用于Java平台上的程序在不同硬件平台上的移植。Java程序通过编译器将源代码编译成字节码,然后通过JVM解释或即时编译(…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...