用Python实现时间序列模型实战——Day 18: 时间序列中的季节性与周期性预测
一、学习内容
1. 季节性调整与周期性预测
季节性调整 是在时间序列分析中常用的技术,旨在去除数据中因季节性波动导致的周期性变化,使数据更易于解释和预测。通常,我们可以使用季节性分解方法来分离时间序列中的趋势、季节性和随机成分。
周期性预测 主要关注数据中的周期性模式,例如每年、每月或每季度发生的重复行为。季节性模式通常可以通过 SARIMA (季节性 ARIMA) 或 Holt-Winters 等模型进行建模。
2. 基于周期性模式的长期预测方法
基于周期性模式的预测方法,通常使用模型如 SARIMA 或 Holt-Winters 模型。这些模型可以捕捉时间序列中的季节性模式,并根据历史周期预测未来的值。
SARIMA 模型 的季节性部分通过在标准 ARIMA 模型中增加季节性自回归和移动平均成分来处理季节性波动。
Holt-Winters 模型 能够同时处理趋势、季节性和残差成分,它是非常经典的时间序列预测模型。
二、实战案例
我们将使用 Python 的 statsmodels 和 holtwinters 模型对带有季节性和周期性的时间序列数据进行预测。
1. 数据生成
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.holtwinters import ExponentialSmoothing# 生成模拟的时间序列数据(带有季节性和趋势)
np.random.seed(42)
n_obs = 200
time = pd.date_range(start='2000-01-01', periods=n_obs, freq='M')
trend = 0.05 * np.arange(n_obs) # 线性趋势
seasonal = 10 * np.sin(2 * np.pi * time.month / 12) # 季节性
noise = np.random.normal(0, 1, n_obs)
data = trend + seasonal + noise# 创建数据框
ts_data = pd.DataFrame({'Date': time, 'Value': data})
ts_data.set_index('Date', inplace=True)# 绘制时间序列
plt.figure(figsize=(10, 6))
plt.plot(ts_data['Value'], label='Original Data')
plt.title('Simulated Time Series with Seasonality and Trend')
plt.legend()
plt.show()
代码解释:
- 我们生成了一个带有线性趋势和季节性波动的模拟时间序列。每个月的数据受到季节性波动(周期性为 12 个月)的影响,并带有噪声干扰。
结果输出:

2. 季节性分解
# 对时间序列进行季节性分解
result = seasonal_decompose(ts_data['Value'], model='additive', period=12)
result.plot()
plt.show()
代码解释:
- 使用
seasonal_decompose对时间序列进行分解,将其分为趋势、季节性和残差三部分。分解后的结果可以帮助我们理解时间序列的组成部分。
结果输出:

3. SARIMA 模型预测
# 使用 SARIMA 模型进行季节性预测
sarima_model = SARIMAX(ts_data['Value'], order=(1, 1, 1), seasonal_order=(1, 1, 1, 12))
sarima_fitted = sarima_model.fit()# 进行未来24个月的预测
sarima_forecast = sarima_fitted.forecast(steps=24)# 绘制SARIMA预测结果
plt.figure(figsize=(10, 6))
plt.plot(ts_data.index, ts_data['Value'], label='Original Data')
plt.plot(pd.date_range(start=ts_data.index[-1], periods=24, freq='M'), sarima_forecast, label='SARIMA Forecast')
plt.title('SARIMA Model Forecast')
plt.legend()
plt.show()
代码解释:
- 我们使用 SARIMA 模型对数据进行建模,并预测未来 24 个月的值。SARIMA 模型能够捕捉时间序列中的趋势和季节性模式。
结果输出:

4. Holt-Winters 模型预测
# 使用 Holt-Winters 模型进行预测
hw_model = ExponentialSmoothing(ts_data['Value'], trend='add', seasonal='add', seasonal_periods=12).fit()
hw_forecast = hw_model.forecast(steps=24)# 绘制 Holt-Winters 预测结果
plt.figure(figsize=(10, 6))
plt.plot(ts_data.index, ts_data['Value'], label='Original Data')
plt.plot(pd.date_range(start=ts_data.index[-1], periods=24, freq='M'), hw_forecast, label='Holt-Winters Forecast')
plt.title('Holt-Winters Model Forecast')
plt.legend()
plt.show()
代码解释:
- 使用 Holt-Winters 模型进行建模,预测未来 24 个月的趋势和季节性。Holt-Winters 模型同样适合处理含有季节性和趋势的时间序列。
结果输出:

三、结果分析
1. 季节性分解结果
- 分解图展示了时间序列中的趋势、季节性和随机波动。趋势成分显示了时间序列的线性增长,季节性成分显示了每年的周期性波动。
2. SARIMA 模型预测
- SARIMA 模型的预测结果展示了未来 24 个月的预测值,预测曲线捕捉了季节性波动,并跟随原始数据的趋势变化。
3. Holt-Winters 模型预测
- Holt-Winters 模型同样能够捕捉季节性和趋势,预测结果展示了与 SARIMA 相似的趋势和周期性变化。
四、总结
通过 SARIMA 和 Holt-Winters 模型,我们能够对带有季节性和周期性特征的时间序列数据进行长期预测。季节性分解帮助我们理解数据的组成部分,而基于周期性模式的模型能够提供准确的预测结果。
相关文章:
用Python实现时间序列模型实战——Day 18: 时间序列中的季节性与周期性预测
一、学习内容 1. 季节性调整与周期性预测 季节性调整 是在时间序列分析中常用的技术,旨在去除数据中因季节性波动导致的周期性变化,使数据更易于解释和预测。通常,我们可以使用季节性分解方法来分离时间序列中的趋势、季节性和随机成分。 …...
JavaScript ES6特性(var let const、function=>、增强表达赋值、类与对象)
一、var let const 1、var var明明定义在for里面的但是外部能够访问这个变量,说明var可以跨域访问。 2、let let明明定义在for里面的但是外部不能够访问这个变量,说明let不可以跨域访问。 3、const const foo = {}; // 为 foo 添加一个属性,可以成功 foo.prop = 123; fo…...
Paddle安装详解(CPU版本)
目录 1. 安装Python2. 安装paddle3. 验证3.1 初步验证3.2 将numpy版本从2.1.1降为2.0.13.3 再次验证1. 安装Python Python版本 C:\Users\james>python --version Python 3.12.62. 安装paddle 安装paddle及依赖库setuptools python -m pip install paddlepaddle==2.6.1 -…...
PHP即刻送达同城派送小程序系统
即刻送达,同城派送小程序系统让生活更便捷 🚀 瞬间连接,即刻送达的奇迹 你是否曾经因为等待快递而焦急万分?是否渴望有一种方式能让物品像魔法一样瞬间出现在你面前?现在,有了“即刻送达同城派送小程序系…...
RabbitMQ的Direct Exchange模式实现的消息发布案例
Producer生产者代码 import com.rabbitmq.client.Channel; import com.rabbitmq.client.Connection; import com.rabbitmq.client.ConnectionFactory;public class RabbitMQProducer {private final static String EXCHANGE_NAME "direct_message_exchange";privat…...
数据结构-二叉树-基础知识
数据结构-二叉树-基础知识 1.树1.1什么是树1.2基本概念子节点、父节点叶节点节点的度树的高度/深度节点的子孙、祖先 1.3树与非树1.4如何实现1.5实例 2.二叉树2.1什么是二叉树2.2特殊的二叉树满二叉树完全二叉树 2.3性质层数度节点 2.4存储结构 1.树 1.1什么是树 树型结构是一…...
wangeditor——cdn引入的形式创建一个简易版编辑器——js技能提升
昨天同事那边有个需求,就是要实现聊天功能,需要用到一个富文本编辑器,参考如下: 上面的这个效果图是博客园的评论输入框 最终使用wangEditor编辑器实现的效果如下: 只保留了个别的菜单: 默认模式的wangE…...
9.11.
Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget), speecher(new QTextToSpeech(this)) {//设置时钟ui->setupUi(this);startTimer(1000);//文本框label居中对齐ui->label_2->setAlignment(Qt::AlignCenter);connect(this,&Widget::my_sign…...
【GeekBand】C++设计模式笔记1_介绍
课程目标 理解松耦合设计思想掌握面向对象设计原则掌握重构技法改善设计掌握GOF核心设计模式 什么是设计模式 目标:复用,以不变应万变 GOF设计模式 从面向对象谈起 深入理解面向对象 向下:深入理解三大面向对象机制 封装:隐藏…...
MySQL 数据库:原理、应用与发展
摘要:本文深入探讨了 MySQL 数据库相关内容。首先介绍了 MySQL 作为开源关系型数据库管理系统的显著特点,包括易用性、跨平台性、高性能、可扩展性、开源免费以及数据安全性等方面。接着详细阐述了其安装与配置过程,涵盖在不同操作系统上的安…...
7.2图像旋转
实验原理 在OpenCV中,图像旋转也是一种常见的几何变换,它可以用来调整图像的方向。图像旋转通常涉及绕着图像中心点旋转一定角度的操作。与图像平移类似,旋转也可以通过仿射变换来实现,但是旋转需要使用到旋转矩阵来定义旋转的角…...
学学vue-2
1.7 指令修饰符 keyup.enter:监听键盘回车事件,回车触发事件keyup.enter代码 v-model修饰符: v-model.trim:去首尾空格v-model.number:变数字(如果是数字的话,转变为数字) 事件名.…...
什么是 Grafana?
什么是 Grafana? Grafana 是一个功能强大的开源平台,用于创建、查看、查询和分析来自多个来源的数据。通过可视化仪表盘(Dashboard),它能够帮助用户监控实时数据、生成历史报告,甚至进行预测分析。Grafana…...
【Prompt Engineering:思维树 (ToT)、检索增强生成 (RAG)、自动推理并使用工具 (ART)】
思维树 (ToT) 对于需要探索或预判战略的复杂任务来说,传统或简单的提示技巧是不够的。最近,Yao et el. (2023)(opens in a new tab) 提出了思维树(Tree of Thoughts,ToT)框架,该框架基于思维链提示进行了总…...
【习题】应用/元服务上架
判断题 1. 一个完整的发布软件包必须包含一个Profile文件。 A、正确(True) B、错误(False) 2. 编译打包的软件包存放在项目目录build > outputs > default下。 A、正确(True) B、错误(False) 单选题 1. 创建应用时,应用包名需要和在DevEco …...
性能测试的复习3-jmeter的断言、参数化、提取器
一、断言、参数化、提取器 需求: 提取查天气获取城市名请求的响应结果:城市对查天气获取城市名的响应结果进行响应断言和json断言对查天气获取城市名添加用户参数 1、步骤 查看天气获取城市名 json提取器(对响应结果提取、另一个接口请求…...
ORB-SLAM2关键点总结
1.ORB-SLAM2的总体框架是怎样的 ORB-SLAM2一共有三个线程,分别是Tracking、Local Mapping、Loop Closing线程,,其中Tracking负责完成关键点提取,并进行帧间匹配,同时初步选取关键帧;Local Mapping线程主要…...
拱式桥安全结构健康监测解决方案
拱式桥作为一种常见的桥梁结构,其拱形设计不仅美观,还具有较高的承载能力。然而,随着使用年限的增加和环境因素的影响,拱式桥的结构健康和稳定需要持续监测和评估。自动化监测技术的应用,可以提升拱式桥的监测效率和准…...
windows和linux安装mysql5.7.31保姆级教程
一,资源如下,里面有windows和linux版的安装软件,内含Visual C2013中文版windows系统插件 windows资源地址:https://download.csdn.net/download/l1o3v1e4ding/89725150 linux(centos)资源地址:…...
如何使用 PowerShell 脚本来自动化 Windows 开发流程的教程(包括理论介绍和实践示例)
PowerShell 是一种强大的任务自动化和配置管理框架,它为系统管理员和开发人员提供了管理 Windows 操作系统和应用程序的能力。下面是一个关于如何使用 PowerShell 脚本来自动化 Windows 开发流程的教程,包括理论介绍和实践示例。 第一部分:理…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
