【python】OpenCV—Age and Gender Classification

文章目录
- 1、任务描述
- 2、网络结构
- 2.1 人脸检测
- 2.2 性别分类
- 2.3 年龄分类
- 3、代码实现
- 4、结果展示
- 5、参考
1、任务描述
性别分类和年龄分类预测
2、网络结构
2.1 人脸检测


输出最高的 200 个 RoI,每个 RoI 7 个值,(xx,xx,score,x0,y0,x1,y1)
2.2 性别分类
二分类


2.3 年龄分类
按年龄区间分类 ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']


3、代码实现
先检测人脸,人脸外扩,再性别检测,再年龄检测,最后结果绘制输出
# Import required modules
import cv2 as cv
import math
import time
import argparsedef getFaceBox(net, frame, conf_threshold=0.7):frameOpencvDnn = frame.copy()frameHeight = frameOpencvDnn.shape[0] # 333frameWidth = frameOpencvDnn.shape[1] # 500blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)net.setInput(blob)detections = net.forward() # (1, 1, 200, 7), (xxx, xxx, confidence, x0, y0, x1, y1)bboxes = []for i in range(detections.shape[2]): # 遍历 top 200 RoIconfidence = detections[0, 0, i, 2]if confidence > conf_threshold:x1 = int(detections[0, 0, i, 3] * frameWidth)y1 = int(detections[0, 0, i, 4] * frameHeight)x2 = int(detections[0, 0, i, 5] * frameWidth)y2 = int(detections[0, 0, i, 6] * frameHeight)bboxes.append([x1, y1, x2, y2])cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)return frameOpencvDnn, bboxesparser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
parser.add_argument('--input', help='Path to input image or video file. ''Skip this argument to capture frames from a camera.',default="jolie.jpg")
parser.add_argument("--device", default="cpu", help="Device to inference on")args = parser.parse_args()args = parser.parse_args()faceProto = "opencv_face_detector.pbtxt"
faceModel = "opencv_face_detector_uint8.pb"ageProto = "age_deploy.prototxt"
ageModel = "age_net.caffemodel"genderProto = "gender_deploy.prototxt"
genderModel = "gender_net.caffemodel"MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)if args.device == "cpu":ageNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)genderNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)faceNet.setPreferableBackend(cv.dnn.DNN_TARGET_CPU)print("Using CPU device")elif args.device == "gpu":ageNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)ageNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)genderNet.setPreferableBackend(cv.dnn.DNN_BACKEND_CUDA)genderNet.setPreferableTarget(cv.dnn.DNN_TARGET_CUDA)print("Using GPU device")# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(args.input if args.input else 0)
padding = 20
while cv.waitKey(1) < 0:# Read framet = time.time()hasFrame, frame = cap.read()if not hasFrame:cv.waitKey()breakframeFace, bboxes = getFaceBox(faceNet, frame) # (333, 500, 3), 4 bboxif not bboxes:print("No face Detected, Checking next frame")continuefor bbox in bboxes: # 遍历检测出来的人脸# print(bbox)face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)] # 人脸外扩blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)genderNet.setInput(blob)genderPreds = genderNet.forward()gender = genderList[genderPreds[0].argmax()]# array([[9.9999559e-01, 4.4012304e-06]], dtype=float32), 'Male'# print("Gender Output : {}".format(genderPreds))print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))ageNet.setInput(blob)agePreds = ageNet.forward()"""array([[5.3957672e-05, 5.3967893e-02, 9.4579268e-01, 1.0875276e-04, 5.0436443e-05, 1.2142612e-05, 1.0151542e-05, 3.9845672e-06]],dtype=float32)"""age = ageList[agePreds[0].argmax()] # '(8-12)'# print("Age Output : {}".format(agePreds))# print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))label = "{},{}".format(gender, age) # Out[15]: 'Male,(8-12)'cv.putText(frameFace, label, (bbox[0], bbox[1]-5), cv.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2, cv.LINE_AA)# cv.imshow("Age Gender Demo", frameFace)cv.imwrite("age-gender-out-{}".format(args.input), frameFace)print("time : {:.3f}".format(time.time() - t))
4、结果展示
输入图片

人脸检测结果

人脸外扩

输出结果

性别还是比较准的
输入图片

输出结果

输入图片

输出结果

输入图片

输出结果

输入图片

输出结果

5、参考
OpenCV进阶(8)性别和年龄识别
相关文章:
【python】OpenCV—Age and Gender Classification
文章目录 1、任务描述2、网络结构2.1 人脸检测2.2 性别分类2.3 年龄分类 3、代码实现4、结果展示5、参考 1、任务描述 性别分类和年龄分类预测 2、网络结构 2.1 人脸检测 输出最高的 200 个 RoI,每个 RoI 7 个值,(xx,xx&#x…...
python安装换源
安装 python 使用演示的是python 3.8.5 安装完成后,如下操作打开命令行:同时按 “WindowsR” > 输入 “cmd” -> 点击确定 python换源 临时换源: #清华源 pip install markdown -i https://pypi.tuna.tsinghua.edu.cn/simple # 阿里…...
JavaScript练手小技巧:利用鼠标滚轮控制图片轮播
近日,在浏览网站的时候,发现了一个有意思的效果:一个图片轮播,通过上下滚动鼠标滚轮控制图片的上下切换。 于是就有了自己做一个的想法,顺带复习下鼠标滚轮事件。 鼠标滚轮事件,参考这篇文章:…...
搭建Eureka高可用集群 - day03
全部代码发出来了 搭建服务提供者 步骤: 1.创建项目,引入依赖 2.添加Eureka相关配置 3.添加EnableEurekaClient注解 4.测试运行 步骤1:创建项目,引入依赖 使用Spring Initializr方式创建一个名称为eureka-provider的Sprin…...
并行程序设计基础——并行I/O(2)
目录 一、显式偏移的并行文件读写 1、阻塞方式 1.1 MPI_FILE_READ_AT 1.2 MPI_FILE_WRITE_AT 1.3 MPI_FILE_READ_AT_ALL 1.4 MPI_FILE_WRITE_AT_ALL 2、非阻塞方式 2.1 MPI_FILE_IREAD_AT 2.2 MPI_FILE_IWRITE_AT 3、两步非阻塞组调用 3.1 MPI_FILE_READ_AT_ALL_BEG…...
Java三种创建多线程的方法
线程是什么: 进程是程序的一次动态执行的过程,线程是进程中执行运算最小单位,一个进程在其执行过程中可以产生多个线程,而线程必须在某个进程内执行。 如果在一个进程中同时运行了多个线程(必须包含一个主线程&#…...
828华为云征文 | 云上私人数据管家,jMalCloud个人网盘在华为云Flexus的Docker化部署实践
华为云服务器Flexus X实例介绍 华为云Flexus云服务器X实例,是由国家科技进步奖获得者、华为公司Fellow、华为云首席架构师顾炯炯牵头研发。它基于擎天QingTian架构、瑶光云脑、盘古大模型等根技术创新,是业界首款应用驱动的柔性算力云服务器,…...
C# 开源教程带你轻松掌握数据结构与算法
目录 前言 项目介绍 项目特点 项目展示 1、内容导图 2、部分目录 3、源码示例 项目地址 最后 前言 在项目开发过程中,理解数据结构和算法如同掌握盖房子的秘诀。算法不仅能帮助我们编写高效、优质的代码,还能解决项目中遇到的各种难题。 给大家…...
由一个 SwiftData “诡异”运行时崩溃而引发的钩深索隐(五)
概述 在 WWDC 24 中,苹果推出了数据库框架 SwiftData 2.0 版本。其新加入的历史记录追踪(History Trace)机制着实让秃头码农们“如痴如醉”了一番。 我们在之前的博文中已经介绍了 History Trace 是如何处理数据新增操作的。而在这里,我们将再接再厉来完成数据删除时的全盘…...
python爬虫基础:了解html
编辑器vscode <!DOCTYPE html> <html><head><title>第一个网页</title></head><body><h1>字体</h1><h2>字体</h2><h3>字体</h3><p>Lorem, ipsum dolor sit amet consectetur adipisicing…...
spring security OAuth2 客户端接入gitee
一、简介 OAuth 是一个开放标准,该标准允许用户让第三方应用访问该用户在某一网站上存储的私密资源(如头像、照片、视频等),并且在这个过程中无须将用户名和密码提供给第三方应用。通过令牌(token)可以实现这一功能,每一个令牌授权一个特定的…...
阿里云镜像报错 [Errno 14] HTTP Error 302 - Found 问题解决记录
1、问题背景和解决思路 在本地安装 CentOS7 后,网络已调通可正常上网,但切换阿里云镜像后,使用 yum 安装软件时出现 “[Errno 14] HTTPS Error 302 - Found Trying other mirror.” 报错,原因是 yum 源配置问题。给出了详细的解决…...
《Linux运维总结:基于X86_64+ARM64架构CPU使用docker-compose一键离线部署consul 1.18.1容器版分布式ACL集群》
总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:《Linux运维篇:Linux系统运维指南》 一、部署背景 由于业务系统的特殊性,我们需要面向不通的客户安装我们的业务系统&…...
深入剖析嵌套调用和链式访问,以及函数的声明和定义(超全面覆盖)
1. 前情提要 在上一篇博客中,我们大致了解了函数的种类,以及自定义函数中形参和实参的具体区别 我们知道实参是需要传递给形参的,但其实形参和实参占据的是完全独立的内存空间 x,y在执行过程中会得到a和b的值,但是x…...
浏览器百科:网页存储篇-IndexedDB介绍(十)
1.引言 在现代网页开发中,数据存储需求日益增多和复杂,传统的客户端存储技术如localStorage和sessionStorage已难以满足大型数据的存储和管理需求。为了解决这一问题,HTML5 引入了 IndexedDB,在本篇《浏览器百科:网页…...
Java语言程序设计基础篇_编程练习题*18.22 (将十进制數转换为十六进制数)
题目:*18.22 (将十进制數转换为十六进制数) 编写一个递归方法,将一个十进制数转换为一个十六进制数的字符串。方法头如下: public static String dec2Hex(int value)编写一个测试程序,提示用户输入一个十进制数,然后显示等价的十…...
蓝桥杯3. 压缩字符串
题目描述 实现一个算法来压缩一个字符串。压缩的要求如下: 需要判断压缩能不能节省空间,仅在压缩后字符串比原字符串长度更短时进行压缩。 压缩的格式是将连续相同字符替换为字符 数字形式,例如 "AAABCCDDDD" 变为 "A3BC2D…...
Java设计模式之责任链模式详细讲解和案例示范
在本文中,我们将详细讲解Java设计模式中的责任链模式,探讨其基本概念、使用场景、常见问题和解决方式。同时,我们还会介绍责任链模式与策略模式的区别,并结合电商交易系统的示例进行说明。此外,我们还会探讨责任链模式…...
ubuntu_如何解决apt install时报错:Waiting for cache lock: Could not get lock
当你在 Ubuntu 上运行 apt 时,遇到类似 Waiting for cache lock: Could not get lock 错误,通常是因为另一个进程正在使用 apt 或者类似的包管理器工具。你可以按照以下步骤来查找并解决这个问题: 1. 查询哪个进程正在使用锁 系统中的锁文件…...
软件测试(D5)
步骤: 设计测试-->发现缺陷-->测试报告 Day1 target 1.复述软件测试的定义 2.7种软件测试分类的区别 3.质量模型的重点5项 4.测试流程的6个步骤 5.测试模板的8个要素 认识软件及测试 软件: 控制硬件的工具 应用软件系统软件࿰…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
