【数据分析预备】Pandas
Pandas
构建在NumPy之上,继承了NumPy高性能的数组计算功能,同时提供更多复杂精细的数据处理功能
- 安装
pip install pandas - 导入
import pandas as pd
Series
键值对列表
# 创建Series
s1 = pd.Series([5, 17, 3, 26, 31])
s1
0 5
1 17
2 3
3 26
4 31
dtype: int64
# 获得Series的元素和索引
s1.values
array([ 5, 17, 3, 26, 31])
s1.index
RangeIndex(start=0, stop=5, step=1)
# 索引和切片操作
print(s1[2])
print(s1[1:3])
3
1 17
2 3
dtype: int64
#既可以用标签索引也可以用位置索引
s1 = pd.Series([5, 17, 3, 26, 31], index=["a","d","b","c","e"])
print(s1)
print(s1["b"])
print(s1[1])
a 5
d 17
b 3
c 26
e 31
dtype: int64
3
17
# 标签索引切片包含结束值
s1["d":"c"]
d 17
b 3
c 26
dtype: int64
# 用索引获得任意元素
s1[["a","e","c"]]
a 5
e 31
c 26
dtype: int64
# loc:用标签索引 iloc:用位置索引
s2 = pd.Series([5,17,3,26,31], index=[1,3,5,7,9])
print(s2.loc[3])
print(s2.iloc[3])print(s2.loc[1:3]) #包括结束
print(s2.iloc[1:3]) #不包括结束位置
17
26
1 5
3 17
dtype: int64
3 17
5 3
dtype: int64
# 创建Series的另一种方式
s3 = pd.Series({"qc":4.1,"blb":2.2,"xhs":5.3,"td":3.7,"hg":6.8})
s3
qc 4.1
blb 2.2
xhs 5.3
td 3.7
hg 6.8
dtype: float64
# 查看标签是否存在
"qc" in s3
# 可以根据条件筛选
s3[(s3>5)&(s3<6)]
# 计算操作索引自动对齐,缺失值用0代替
s1.add(s2, fill_value=0)
# 统计信息
s1.describe()
count 5.000000
mean 16.400000
std 12.401613
min 3.000000
25% 5.000000
50% 17.000000
75% 26.000000
max 31.000000
dtype: float64
# 对元素分别操作
# 使用函数作为参数,不改变原始Series,返回新Series
# grades = scores.apply(get_grade_from_score)
Dataframe
数据表格,可以看成由Series组成的字典
- 创建:值是Series或列表,列是各个Series对应的列名
df4 = pd.DataFrame({"学号":{"小明":"01","小红":"02","小杰":"03"}, "班级":{"小明":"二班","小红":"一班","小杰":"二班"},"成绩":{"小明":92,"小红":67,"小杰":70}})
df4
df4.index #获取索引
df4.columns #获取列名
df4.values #获取值(返回NumPy数组)
# 转置
df4.T
df4["班级"]
小明 二班
小红 一班
小杰 二班
Name: 班级, dtype: object
df4.班级 #列名也是dataFrame的属性,特殊符号不适用
小明 二班
小红 一班
小杰 二班
Name: 班级, dtype: object
df4[["学号", "成绩"]]
df4.loc["小红"]
学号 02
班级 一班
成绩 67
Name: 小红, dtype: object
df4.loc["小红","成绩"]
np.int64(67)
df4.loc[:,"成绩"]
df4[df4.成绩 > 67]
# 返回前5行 df4.head()
df4.head(2)# 对列赋值:更新或者增加列值
df4["成绩"] = pd.Series([88, 77, 66], index=["小明","小红","小杰"])
df4["性别"] = ["男", "女", "男"]
df4# 对行用loc
df4.loc["小虎"] = ["04", "三班", 99, "男"]
df4df4.drop(["小明", "小虎"]) # 删除行df4.drop("班级", axis=1) # 删除列 axis=1横向依次(判断)操作# df1.mean(axis=1) # 对行求平均值# df1.apply(函数)# 将函数用在每列
# df1.applymap(function) # 用在每个元素
# 原始df并不改变df4.describe() # 忽略非数字列
相关文章:

【数据分析预备】Pandas
Pandas 构建在NumPy之上,继承了NumPy高性能的数组计算功能,同时提供更多复杂精细的数据处理功能 安装 pip install pandas导入 import pandas as pdSeries 键值对列表 # 创建Series s1 pd.Series([5, 17, 3, 26, 31]) s10 5 1 17 2 3 3 26 4 31 dt…...

MATLAB-基于高斯过程回归GPR的数据回归预测
目录 目录 1 介绍 1. 1 高斯过程的基本概念 1.2 核函数(协方差函数) 1.3 GPR 的优点 1.4. GPR 的局限 2 运行结果 3 核心代码 1 介绍 高斯过程回归(Gaussian Process Regression, GPR)是一种强大的非参数贝叶斯方法&…...

欧洲国际眼科盛会,中国眼科专家周进斩获六项屈光大奖
2024年第42届欧洲白内障和屈光外科医生协会(ESCRS)大会由世界青光眼协会(WGA)、欧洲白内障和屈光外科医生协会(ESCRS)主办,于2024年9月6日至10日在西班牙巴塞罗那举行。 这场眼科盛会,汇聚了来自全球130多个国家的上万名眼科医学领域的顶尖专家、学者和临…...
MySQL——数据库的高级操作(二)用户管理(2)创建普通用户
在创建新用户之前,可以通过 SELECT 语句查看 mysql.user 表中有哪些用户,查询结果如下: mysql> USE mysql; Database changed mysql> SELECT Host, User, authentication_string FROM mysql.user; ----------------------------------…...

VIT论文阅读
把图片看成一个个16x16的patch堆起来的 摘要 卷积神经网络不是必备的,一个纯transformer表现也是非常好的 transformer?2500天tpu v3 介绍 大规模上预训练,小规模任务数据集上微调。扩大模型时候还没观察到瓶颈(还没出现过拟合…...

Python编程入门必备:def关键字与函数参数
在Python编程中,函数是组织代码、实现代码复用和模块化的基础单元。通过函数,可以将复杂的操作封装成独立的代码块,提高代码的可读性和维护性。本文将详细介绍Python中函数的定义和使用,包括def关键字、函数参数的各种类型以及函数…...

LiveKit的agent介绍
概念 LiveKit核心概念: Room(房间)Participant(参会人)Track(信息流追踪) Agent 架构图 订阅信息流 agent交互流程 客户端操作 加入房间 房间创建方式 手动 赋予用户创建房间的…...
青龙面板 升级 及其 依赖更新修复 检测and日志删除等
青龙版本升级 先关闭服务 cd qinglong目录 docker-compose down 关闭 docker pull whyour/qinglong:版本号 //版本号自行选择,如果是为了修复错误,建议版本微升,不然就直接latest 启动 docker-compose up -d 进入容器࿰…...
坐牢第三十七天(Qt)
作业: 使用qt做一个闹钟 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPixmap> #include <QBitmap> #include <QLabel> //标签类 #include <QLineEdit> //行编辑器类 #include <QPushBu…...

Vidu 全球首发「主体参照」新功能,一键同步角色特征;GPT-4o 实时音频项目负责人离职创业丨 RTE 开发者日报
开发者朋友们大家好: 这里是 「RTE 开发者日报」 ,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE(Real-Time Engagement) 领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「…...

电子地图的主要功能与应用
电子地图,即数字地图,是利用计算机技术,以数字方式存储和查阅的地图。它不仅继承了传统纸质地图的基本功能,还通过现代科技手段实现了诸多创新应用。以下是电子地图的主要功能与应用: 一、主要功能 快速存取与显示&…...

基于Java+SpringBoot+Vue+MySQL的西安旅游管理系统网站
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 基于SpringBootVue的西安旅游管理系统网站【附源码文档】、…...
简单介绍 NVIDIA推出的图形处理单元(GPU)架构“安培架构“
概念 "安培架构"(Ampere Architecture)是 NVIDIA 推出的一款图形处理单元(GPU)架构,它是继图灵架构之后的下一代产品。安培架构最初在2020年发布,以其高性能和高效率而闻名,广泛应用…...
Qiskit:量子计算的Python工具包
Qiskit是由IBM开发的开源量子计算软件开发工具包,它提供了一套完整的工具,用于量子电路的设计、模拟、优化和执行。Qiskit支持量子算法的开发,并且可以与IBM的量子计算机硬件进行交互。 Qiskit的主要特点 量子电路设计:Qiskit允…...
Python——贪吃蛇
以下是一个简单的贪吃蛇游戏的Python代码示例: import pygame import time import random# 初始化 Pygame pygame.init()# 定义颜色 BLACK (0, 0, 0) WHITE (255, 255, 255) RED (255, 0, 0) GREEN (0, 255, 0) BLUE (0, 0, 255)# 设置屏幕尺寸 screen_width …...
WPF 依赖属性与附加属性(面试长问)
在WPF中,**依赖属性(Dependency Property)和附加属性(Attached Property)**是WPF依赖属性系统的重要组成部分。它们虽然都基于依赖属性系统,但用途、定义方式和使用场景有显著差异。以下是两者的详细解释及…...
Python 中的各括号用法
括号的使用 在Python中,括号和中括号有不同的用途: 圆括号 (): 函数调用:当你调用一个函数时,需要使用圆括号,即使没有参数。print("Hello, World!") # 调用print函数表达式分组:在…...

业务流程建模(BPM)的重要性及其应用
什么是业务流程建模(BPM)? 业务流程建模(BPM)是对企业内各项业务流程进行图形化描述的一种方法。它旨在通过可视化的方式帮助企业理解和分析现有的业务流程,从而发现潜在的问题并进行改进。BPM通常采用流程…...

isxdigit函数讲解 <ctype.h>头文件函数
目录 1.头文件 2.isxdigit函数使用 方源一把抓住VS2022,顷刻 炼化! 1.头文件 以上函数都需要包括头文件<ctype.h> ,其中包括 isxdigit 函数 #include<ctype.h> 2.isxdigit函数使用 isxdigit 函数是判断字符是否为十六进制数…...
Linux中安装NextCloud
切换为 root 账号 Ubutu 系统默认登录的用户为非 root 权限用户,为了能正常安装 nextCloud,需要切换为 root 账号。执行如下命令即可: sudo su 更新及安装基础包 请依次运行如下命令,有遇到询问的Is this ok [y/d/N]的时候直接键…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...