当前位置: 首页 > news >正文

分类预测|基于改进的灰狼IGWO优化支持向量机SVM的数据分类预测matlab程序 改进策略:Cat混沌与高斯变异

分类预测|基于改进的灰狼IGWO优化支持向量机SVM的数据分类预测matlab程序 改进策略:Cat混沌与高斯变异

文章目录

  • 一、基本原理
      • 原理
      • 流程
        • 1. **定义目标函数**
        • 2. **初始化GWO**
        • 3. **评估适应度**
        • 4. **更新狼的位置**
        • 5. **更新狼的等级**
        • 6. **重复迭代**
        • 7. **选择最佳解**
      • 示例
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、基本原理

灰狼优化算法(Grey Wolf Optimizer,GWO)是一种群体智能优化算法,其灵感来自于灰狼的捕猎行为。支持向量机(SVM)是一种常用的分类算法。将GWO与SVM结合可以改进SVM的性能,特别是在超参数优化方面。下面是GWO优化SVM分类模型的详细原理和流程:

原理

  1. 支持向量机(SVM)基础

    • SVM是一种监督学习模型,用于分类和回归任务。其核心是通过寻找一个最优的超平面来分隔不同类别的数据。
    • SVM的性能依赖于几个关键超参数,包括惩罚参数 (C) 和核函数的参数(例如高斯径向基函数核中的 (\gamma))。
  2. 灰狼优化算法(GWO)

    • GWO是一种模拟灰狼捕猎行为的群体智能优化算法。它通过模拟灰狼的社会结构和捕猎策略来寻找最优解。
    • GWO包括四种角色:α狼、β狼、δ狼和ω狼,分别代表领导者、次领导者、跟随者和较弱的个体。
    • 算法通过更新位置和适应度函数来引导搜索过程,以找到最优解。

流程

1. 定义目标函数
  • 目标函数是用来评估SVM模型的性能。通常,目标函数是SVM模型的分类准确率、交叉验证误差或其他性能指标。
  • 目标是通过GWO算法优化SVM的超参数,使目标函数的值最优。
2. 初始化GWO
  • 随机生成一组候选解(即超参数组合),这些解在GWO中充当灰狼的位置。
  • 初始化每个狼的参数,例如 (C) 和 (\gamma) 的初始值。
3. 评估适应度
  • 对每一组超参数组合,使用SVM训练模型并评估其在验证集上的性能。
  • 计算目标函数值(如交叉验证误差)。
4. 更新狼的位置

在这里插入图片描述

5. 更新狼的等级
  • 根据适应度函数值,将狼分为α、β、δ和ω。
  • α狼是适应度值最佳的狼,β狼次之,δ狼再其次,其余的是ω狼。
6. 重复迭代
  • 迭代更新狼的位置和等级,直到达到预设的停止条件(如迭代次数或适应度值的收敛)。
7. 选择最佳解
  • 在所有迭代过程中,记录最优的超参数组合。
  • 使用这些超参数训练最终的SVM模型,并进行测试以评估其分类性能。

示例

假设你要优化SVM的超参数 (C) 和 (\gamma):

  1. 定义目标函数:交叉验证误差。
  2. 初始化GWO:生成一组 (C) 和 (\gamma) 的候选值。
  3. 评估适应度:使用这些超参数训练SVM,并计算交叉验证误差。
  4. 更新位置:根据GWO公式更新候选超参数值。
  5. 更新等级:根据误差排序更新狼的等级。
  6. 重复迭代:进行多次迭代直到收敛。
  7. 选择最佳解:选择误差最小的超参数组合作为最终结果。

通过GWO优化SVM的超参数,你可以提高分类模型的性能,得到更准确的预测结果。

二、实验结果

在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

相关文章:

分类预测|基于改进的灰狼IGWO优化支持向量机SVM的数据分类预测matlab程序 改进策略:Cat混沌与高斯变异

分类预测|基于改进的灰狼IGWO优化支持向量机SVM的数据分类预测matlab程序 改进策略:Cat混沌与高斯变异 文章目录 一、基本原理原理流程1. **定义目标函数**2. **初始化GWO**3. **评估适应度**4. **更新狼的位置**5. **更新狼的等级**6. **重复迭代**7. **选择最佳解…...

圆锥曲线练习

设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A\left( x_{1}, y_{1} \right), B\left( x_{2}, y_{2} \right) A(x1​,y1​),B(x2​,y2​) l : y k ( x 2 ) l: y k\left( x2 \right) l:yk(x2) 显然 y 0 y0 y0符合题意 当 k ≠ 0 k\neq 0 k0 联立 l l l和 C C C ( k 2 1 2 ) x…...

STM32时钟树

1 什么是时钟 2 时钟数简图...

NX—UI界面生成的文件在VS上的设置

UI界面保存生成的三个文件 打开VS创建项目,删除自动生成的cpp文件,将生成的hpp和cpp文件拷贝到项目的目录下,并且在VS项目中添加现有项目。 修改VS的输出路径,项目右键选择属性,链接器中的常规,文件路径D:…...

Wine容器内程序执行sh脚本问题研究

问题背景 wpf程序在wine环境执行sh脚本,不能等待脚本执行完成自动退出的问题进行了研究,需求很简单,在wpf程序使用cmd,或者bat ,又或者是直接执行sh脚本,想到脚本执行完成才处理后面的逻辑。但是实际验证过…...

《深度学习》OpenCV轮廓检测 模版匹配 解析及实现

目录 一、模型匹配 1、什么是模型匹配 2、步骤 1)提取模型的特征 2)在图像中查找特征点 3)进行特征匹配 4)模型匹配 3、参数及用法 1、用法 2、参数 1)image:待搜索对象 2)templ&am…...

Java XML

1、XML文件介绍 配置文件:用来保存设置的一些东西。 拿IDEA来举例,比如设置的背景图片,字体信息,字号信息和主题信息等等。 (1)以前是用txt保存的,没有任何优点,而且不利于阅读&a…...

好用的视频压缩工具有哪些?这4款千万不要错过

视频压缩的方法有很多种,像我们手机里的视频剪辑工具,手机和电脑自带的压缩功能,在线压缩网站,专业压缩软件压缩等等。不同的场景和需求下大家可以选择不同的工具,但是如果碰到需要大量和经常压缩视频的话,…...

【Python爬虫系列】_016.关于登录和验证码

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…...

基于opencv实现双目立体匹配点云距离

双目相机或两个单目相机。 一、相机标定 MATLAB软件,打开双目标定app。 点击add images,弹出加载图像的窗口,分别导入左图和右图,设置黑白格长度(标定板的长度一般为20)。 点击确定,弹出加载…...

RabbitMQ高级篇,进阶内容

强烈建议在看本篇博客之前快速浏览文章:RabbitMQ基础有这一篇就够了 RabbitMQ高级篇 0. 前言1. 发送者的可靠性1.1 生产者重试机制1.2 生产者确认机制1.3 实现生产者确认 2. MQ的可靠性2.1 MQ持久化2.2 LazyQueue 3. 消费者的可靠性3.1 消费者确认机制3.2 失败重试策…...

STM32重定义printf,实现串口打印

在“usart.c”文件中加入以下代码 #ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endifPUTCHAR_PROTOTYPE{HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);return ch; }…...

项目进度

变为负进度了,还是要用baseservlet,我就又重新写了一部分,看了好几遍视频,突然就想明白了,感觉每次要上课,就时间不连续思路总是断,今天晚自习算是搞懂了怎么写了,就是代码有点多&am…...

Android的内核

Android的内核是基于Linux的长期支持版本的“Android通用内核(ACK)”。 Android作为一个广泛使用的操作系统,其根基在于内核的设计和功能。下面将深入探讨Android内核的各个方面,从其基本结构到与Linux内核的关系,再到内核的版本管理及在设备…...

Github Wiki 超链接 转 码云Gitee Wiki 超链接

Github Wiki 超链接 转 码云Gitee Wiki 超链接 Github 是 :[[相对路径]] Gitee 是 :[链接文字](./相对路径) 查找:\[\[(.*?)\]\] 替换:[$1]\(./$1\) 或替换:**[$1]\(./$1\)** (码云的超链接,很…...

Android10源码刷入Pixel2以及整合GMS

一、ASOP源码下载 具体可以参考我之前发布的文章 二、下载相关驱动包 这一步很关键,关系到编译后的镜像能否刷入后运行 下载链接:Nexus 和 Pixel 设备的驱动程序二进制文件 如下图所示,将两个驱动程序上传到Ubuntu服务器,并进行解压,得到两个脚本: 下载解压后会有两…...

wpf触发与模板的使用示例:批量生产工具

批量生产工具 <Window x:Class"WpfM20UpdateFW.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expressio…...

brew install node提示:Error: No such keg: /usr/local/Cellar/node

打开本地文件发现Cellar目录下无法生成 node文件&#xff0c;应该是下载时出现问题&#xff0c;重复下载无法解决问题&#xff0c;只能重新安装brew。 步骤1&#xff08;安装 brew&#xff09;&#xff1a; /bin/zsh -c “$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/ra…...

记录一下gitlab社区版的安装教程

目录 1.更新系统软件包 2.安装必要的依赖 3.添加GitLab源 3.1对于GitLab Enterprise Edition&#xff08;EE&#xff09;&#xff1a; 3.2对于GitLab Community Edition&#xff08;CE&#xff09;&#xff1a; 4.安装GitLab 4.1安装GitLab Enterprise Edition&#xff08;E…...

20. 如何在MyBatis中处理多表关联查询?常见的实现方式有哪些?

在MyBatis中处理多表关联查询是一项常见的需求&#xff0c;特别是在关系型数据库中存储复杂的实体关系时。MyBatis提供了多种方式来实现多表关联查询&#xff0c;常见的实现方式包括使用<association>和<collection>标签在<resultMap>中进行对象关系映射&…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...