当前位置: 首页 > news >正文

分类预测|基于改进的灰狼IGWO优化支持向量机SVM的数据分类预测matlab程序 改进策略:Cat混沌与高斯变异

分类预测|基于改进的灰狼IGWO优化支持向量机SVM的数据分类预测matlab程序 改进策略:Cat混沌与高斯变异

文章目录

  • 一、基本原理
      • 原理
      • 流程
        • 1. **定义目标函数**
        • 2. **初始化GWO**
        • 3. **评估适应度**
        • 4. **更新狼的位置**
        • 5. **更新狼的等级**
        • 6. **重复迭代**
        • 7. **选择最佳解**
      • 示例
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、基本原理

灰狼优化算法(Grey Wolf Optimizer,GWO)是一种群体智能优化算法,其灵感来自于灰狼的捕猎行为。支持向量机(SVM)是一种常用的分类算法。将GWO与SVM结合可以改进SVM的性能,特别是在超参数优化方面。下面是GWO优化SVM分类模型的详细原理和流程:

原理

  1. 支持向量机(SVM)基础

    • SVM是一种监督学习模型,用于分类和回归任务。其核心是通过寻找一个最优的超平面来分隔不同类别的数据。
    • SVM的性能依赖于几个关键超参数,包括惩罚参数 (C) 和核函数的参数(例如高斯径向基函数核中的 (\gamma))。
  2. 灰狼优化算法(GWO)

    • GWO是一种模拟灰狼捕猎行为的群体智能优化算法。它通过模拟灰狼的社会结构和捕猎策略来寻找最优解。
    • GWO包括四种角色:α狼、β狼、δ狼和ω狼,分别代表领导者、次领导者、跟随者和较弱的个体。
    • 算法通过更新位置和适应度函数来引导搜索过程,以找到最优解。

流程

1. 定义目标函数
  • 目标函数是用来评估SVM模型的性能。通常,目标函数是SVM模型的分类准确率、交叉验证误差或其他性能指标。
  • 目标是通过GWO算法优化SVM的超参数,使目标函数的值最优。
2. 初始化GWO
  • 随机生成一组候选解(即超参数组合),这些解在GWO中充当灰狼的位置。
  • 初始化每个狼的参数,例如 (C) 和 (\gamma) 的初始值。
3. 评估适应度
  • 对每一组超参数组合,使用SVM训练模型并评估其在验证集上的性能。
  • 计算目标函数值(如交叉验证误差)。
4. 更新狼的位置

在这里插入图片描述

5. 更新狼的等级
  • 根据适应度函数值,将狼分为α、β、δ和ω。
  • α狼是适应度值最佳的狼,β狼次之,δ狼再其次,其余的是ω狼。
6. 重复迭代
  • 迭代更新狼的位置和等级,直到达到预设的停止条件(如迭代次数或适应度值的收敛)。
7. 选择最佳解
  • 在所有迭代过程中,记录最优的超参数组合。
  • 使用这些超参数训练最终的SVM模型,并进行测试以评估其分类性能。

示例

假设你要优化SVM的超参数 (C) 和 (\gamma):

  1. 定义目标函数:交叉验证误差。
  2. 初始化GWO:生成一组 (C) 和 (\gamma) 的候选值。
  3. 评估适应度:使用这些超参数训练SVM,并计算交叉验证误差。
  4. 更新位置:根据GWO公式更新候选超参数值。
  5. 更新等级:根据误差排序更新狼的等级。
  6. 重复迭代:进行多次迭代直到收敛。
  7. 选择最佳解:选择误差最小的超参数组合作为最终结果。

通过GWO优化SVM的超参数,你可以提高分类模型的性能,得到更准确的预测结果。

二、实验结果

在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

相关文章:

分类预测|基于改进的灰狼IGWO优化支持向量机SVM的数据分类预测matlab程序 改进策略:Cat混沌与高斯变异

分类预测|基于改进的灰狼IGWO优化支持向量机SVM的数据分类预测matlab程序 改进策略:Cat混沌与高斯变异 文章目录 一、基本原理原理流程1. **定义目标函数**2. **初始化GWO**3. **评估适应度**4. **更新狼的位置**5. **更新狼的等级**6. **重复迭代**7. **选择最佳解…...

圆锥曲线练习

设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A\left( x_{1}, y_{1} \right), B\left( x_{2}, y_{2} \right) A(x1​,y1​),B(x2​,y2​) l : y k ( x 2 ) l: y k\left( x2 \right) l:yk(x2) 显然 y 0 y0 y0符合题意 当 k ≠ 0 k\neq 0 k0 联立 l l l和 C C C ( k 2 1 2 ) x…...

STM32时钟树

1 什么是时钟 2 时钟数简图...

NX—UI界面生成的文件在VS上的设置

UI界面保存生成的三个文件 打开VS创建项目,删除自动生成的cpp文件,将生成的hpp和cpp文件拷贝到项目的目录下,并且在VS项目中添加现有项目。 修改VS的输出路径,项目右键选择属性,链接器中的常规,文件路径D:…...

Wine容器内程序执行sh脚本问题研究

问题背景 wpf程序在wine环境执行sh脚本,不能等待脚本执行完成自动退出的问题进行了研究,需求很简单,在wpf程序使用cmd,或者bat ,又或者是直接执行sh脚本,想到脚本执行完成才处理后面的逻辑。但是实际验证过…...

《深度学习》OpenCV轮廓检测 模版匹配 解析及实现

目录 一、模型匹配 1、什么是模型匹配 2、步骤 1)提取模型的特征 2)在图像中查找特征点 3)进行特征匹配 4)模型匹配 3、参数及用法 1、用法 2、参数 1)image:待搜索对象 2)templ&am…...

Java XML

1、XML文件介绍 配置文件:用来保存设置的一些东西。 拿IDEA来举例,比如设置的背景图片,字体信息,字号信息和主题信息等等。 (1)以前是用txt保存的,没有任何优点,而且不利于阅读&a…...

好用的视频压缩工具有哪些?这4款千万不要错过

视频压缩的方法有很多种,像我们手机里的视频剪辑工具,手机和电脑自带的压缩功能,在线压缩网站,专业压缩软件压缩等等。不同的场景和需求下大家可以选择不同的工具,但是如果碰到需要大量和经常压缩视频的话,…...

【Python爬虫系列】_016.关于登录和验证码

我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…...

基于opencv实现双目立体匹配点云距离

双目相机或两个单目相机。 一、相机标定 MATLAB软件,打开双目标定app。 点击add images,弹出加载图像的窗口,分别导入左图和右图,设置黑白格长度(标定板的长度一般为20)。 点击确定,弹出加载…...

RabbitMQ高级篇,进阶内容

强烈建议在看本篇博客之前快速浏览文章:RabbitMQ基础有这一篇就够了 RabbitMQ高级篇 0. 前言1. 发送者的可靠性1.1 生产者重试机制1.2 生产者确认机制1.3 实现生产者确认 2. MQ的可靠性2.1 MQ持久化2.2 LazyQueue 3. 消费者的可靠性3.1 消费者确认机制3.2 失败重试策…...

STM32重定义printf,实现串口打印

在“usart.c”文件中加入以下代码 #ifdef __GNUC__#define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endifPUTCHAR_PROTOTYPE{HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);return ch; }…...

项目进度

变为负进度了,还是要用baseservlet,我就又重新写了一部分,看了好几遍视频,突然就想明白了,感觉每次要上课,就时间不连续思路总是断,今天晚自习算是搞懂了怎么写了,就是代码有点多&am…...

Android的内核

Android的内核是基于Linux的长期支持版本的“Android通用内核(ACK)”。 Android作为一个广泛使用的操作系统,其根基在于内核的设计和功能。下面将深入探讨Android内核的各个方面,从其基本结构到与Linux内核的关系,再到内核的版本管理及在设备…...

Github Wiki 超链接 转 码云Gitee Wiki 超链接

Github Wiki 超链接 转 码云Gitee Wiki 超链接 Github 是 :[[相对路径]] Gitee 是 :[链接文字](./相对路径) 查找:\[\[(.*?)\]\] 替换:[$1]\(./$1\) 或替换:**[$1]\(./$1\)** (码云的超链接,很…...

Android10源码刷入Pixel2以及整合GMS

一、ASOP源码下载 具体可以参考我之前发布的文章 二、下载相关驱动包 这一步很关键,关系到编译后的镜像能否刷入后运行 下载链接:Nexus 和 Pixel 设备的驱动程序二进制文件 如下图所示,将两个驱动程序上传到Ubuntu服务器,并进行解压,得到两个脚本: 下载解压后会有两…...

wpf触发与模板的使用示例:批量生产工具

批量生产工具 <Window x:Class"WpfM20UpdateFW.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expressio…...

brew install node提示:Error: No such keg: /usr/local/Cellar/node

打开本地文件发现Cellar目录下无法生成 node文件&#xff0c;应该是下载时出现问题&#xff0c;重复下载无法解决问题&#xff0c;只能重新安装brew。 步骤1&#xff08;安装 brew&#xff09;&#xff1a; /bin/zsh -c “$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/ra…...

记录一下gitlab社区版的安装教程

目录 1.更新系统软件包 2.安装必要的依赖 3.添加GitLab源 3.1对于GitLab Enterprise Edition&#xff08;EE&#xff09;&#xff1a; 3.2对于GitLab Community Edition&#xff08;CE&#xff09;&#xff1a; 4.安装GitLab 4.1安装GitLab Enterprise Edition&#xff08;E…...

20. 如何在MyBatis中处理多表关联查询?常见的实现方式有哪些?

在MyBatis中处理多表关联查询是一项常见的需求&#xff0c;特别是在关系型数据库中存储复杂的实体关系时。MyBatis提供了多种方式来实现多表关联查询&#xff0c;常见的实现方式包括使用<association>和<collection>标签在<resultMap>中进行对象关系映射&…...

【百日算法计划】:每日一题,见证成长(013)

题目 回文链表 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为回文链表。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 输入&#xff1a;head [1,2,2,1] 输出&#xff1a;true 思路 找到中间节点反转后半部分链表前后链表顺序比…...

PCL 读取和保存点云

目录 一、概述 1.1原理 1.2实现步骤 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接&#xff1a; PCL点云算法与项目实战案例汇总&#xff08;长期更新&#xff09; 一、概述 1.1原理 PCL (Point Cloud Library) 是…...

js | TypeError: Cannot read properties of null (reading ‘indexOf’) 【解决】

js | TypeError: Cannot read properties of null (reading ‘indexOf’) 【解决】 描述 概述 在前端开发中&#xff0c;遇到TypeError: Cannot read properties of null (reading indexOf)这类错误并不罕见。这个错误通常表明你试图在一个null值上调用indexOf方法&#xff0c…...

微信小程序-formData使用

作者&#xff1a;fyupeng 技术专栏&#xff1a;☞ https://github.com/fyupeng 项目地址&#xff1a;☞ https://github.com/fyupeng/distributed-blog-system-api 留给读者 一、介绍 在小程序中使用formdata上传数据&#xff0c;可实现多文件上传 跟浏览器中的FormData对象类…...

潜在语义分析(Latent Semantic Analysis,LSA)—无监督学习方法、非概率模型、判别模型、线性模型、非参数化模型、批量学习

定义 输入: X [ x 11 x 12 ⋯ x 1 n x 21 x 22 ⋯ x 2 n ⋮ ⋮ ⋮ ⋮ x m 1 x m 2 ⋯ x m n ] , 文本集合 D { d 1 , d 2 , ⋯ , d n } , 单词集合 W { ω 1 , ω 2 , ⋯ , ω m } , x i j : 单词 ω i 在文本 d j 中出现的频数或权值 X\left[ \begin{array}{cccc} x_{11} …...

【安全漏洞】MySQL 8.0.33 、CVE-2023-22102

mysql-connector-java:jar:8.0.33已经重新定位到mysql-connector-j:jar:8.0.33 安全漏洞描述 在SBOM扫描过程中&#xff0c;检测到mysql-connector-j:8.0.33存在如下高危安全漏洞&#xff1a; CVE-2023-22102&#xff1a;Oracle MySQL Connectors 8.1.0 版本之前存在安全漏洞&…...

Flutter 响应式框架

一、简介 响应式框架会自动使用户界面适应不同的屏幕大小。创建你的用户界面一次&#xff0c;让它显示完美的像素在移动&#xff0c;平板电脑和桌面&#xff01; 1.1 问题 支持多种显示尺寸通常意味着要多次重新创建同一布局。在传统的Bootstrap方法下&#xff0c;构建响应式…...

电脑AE特效软件 After Effects软件2017中文版下载安装指南 (Win/Mac)

电脑ae特效软件 After Effects软件2017中文版下载安装win/... 电脑AE特效软件 After Effects软件2017中文版下载安装指南 (Win/Mac) Adobe After Effects 2017 是一款功能强大的视频后期处理软件&#xff0c;广泛应用于影视特效制作、动态图形设计、视觉效果合成等领域。其丰…...

C#中的装箱和拆箱是什么

在 C# 中&#xff0c;装箱&#xff08;Boxing&#xff09;和拆箱&#xff08;Unboxing&#xff09;是与值类型和引用类型相关的概念&#xff0c;涉及到值类型的数据在托管堆&#xff08;Heap&#xff09;上的存储方式。 装箱&#xff08;Boxing&#xff09; 装箱是指将值类型…...

在 Debian 12 上安装中文五笔输入法

在 Debian 12 上安装中文五笔输入法&#xff0c;你可以通过以下步骤进行&#xff1a; 更新系统包列表&#xff1a; 打开终端&#xff0c;首先更新你的系统包列表&#xff1a; sudo apt update安装输入法框架&#xff1a; 安装 fcitx5 输入法框架&#xff1a; sudo apt install …...