Python判断两张图片的相似度
在Python中,判断两张以numpy
的ndarray
格式存储的图片的相似度,通常可以通过多种方法来实现,包括但不限于直方图比较、像素差比较、结构相似性指数(SSIM)、特征匹配等。以下是一些常见方法的简要介绍和示例代码。
1. 像素差比较
最直接的方法是计算两张图片对应像素之间的差异。然而,这种方法对图片的旋转、缩放等变换非常敏感。
import numpy as npdef pixel_difference(img1, img2):if img1.shape != img2.shape:raise ValueError("Images must have the same shape")diff = np.sum(np.abs(img1.astype(np.float32) - img2.astype(np.float32)))return diff# 假设 img1 和 img2 是两个相同尺寸的 ndarray 图片
# result = pixel_difference(img1, img2)
# print(f"Pixel Difference: {result}")
2. 直方图比较
通过比较两张图片的直方图来判断它们的相似度。这种方法对颜色分布敏感,但对空间信息不敏感。
from skimage.exposure import histogramdef histogram_comparison(img1, img2):hist1, bin_idx1 = histogram(img1)hist2, bin_idx2 = histogram(img2)# 这里可以使用多种方法来比较直方图,如计算欧氏距离、巴氏距离等diff = np.linalg.norm(hist1 - hist2)return diff# 假设 img1 和 img2 是两个 ndarray 图片
# result = histogram_comparison(img1, img2)
# print(f"Histogram Difference: {result}")
3. 结构相似性指数(SSIM)
SSIM是一种衡量两幅图片视觉相似度的指标,它考虑了亮度、对比度和结构信息。
from skimage.metrics import structural_similarity as ssimdef compare_ssim(img1, img2):# 确保img1和img2是灰度图,如果不是,需要先转换if img1.ndim == 3:img1 = img1.mean(axis=2)if img2.ndim == 3:img2 = img2.mean(axis=2)(score, diff) = ssim(img1, img2, full=True)return score, diff# 假设 img1 和 img2 是两个 ndarray 图片
# score, diff = compare_ssim(img1, img2)
# print(f"SSIM: {score}, Diff: {diff}")
注意
- 上述代码中的
img1
和img2
应该是相同尺寸和类型的numpy.ndarray
。 - 对于颜色图片,一些方法(如SSIM)可能需要先将图片转换为灰度图或使用其他方式处理颜色通道。
- 在实际应用中,可能需要根据图片的具体情况和需求选择合适的方法。
相关文章:
Python判断两张图片的相似度
在Python中,判断两张以numpy的ndarray格式存储的图片的相似度,通常可以通过多种方法来实现,包括但不限于直方图比较、像素差比较、结构相似性指数(SSIM)、特征匹配等。以下是一些常见方法的简要介绍和示例代码。 1. 像…...

MySQL高级功能-窗口函数
背景 最近遇到需求,需要对数据进行分组排序并获取每组数据的前三名。 一般涉及到分组,第一时间就是想到使用group by对数据进行分组,但这样分组,到最后其实只能获取到每组数据中的一条记录。 在需要获取每组里面的多条记录的时候…...
9.12总结
今天学了树状dp和tarjan 树状dp 树状dp,是一种在树形数据结构上应用的动态规划算法。动态规划(DP)通常用于解决最优化问题,通过将问题分解为相对简单的子问题来求解。在树形结构中,由于树具有递归和子结构的特性&…...

小众创新组合!LightGBM+BO-Transformer-LSTM多变量回归交通流量预测(Matlab)
小众创新组合!LightGBMBO-Transformer-LSTM多变量回归交通流量预测(Matlab) 目录 小众创新组合!LightGBMBO-Transformer-LSTM多变量回归交通流量预测(Matlab)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现LightGBMBO-Transformer-L…...
《CSS新世界》书评
《CSS新世界》是由张鑫旭所著,人民邮电出版社在2021年8月10日出版的一本专门讲解CSS3及其之后版本新特性的进阶读物。这本书是“CSS世界三部曲”中的最后一部,全书近600页,内容丰富,涵盖了CSS的全局知识、已有属性的增强、新布局方…...
python 实现euler modified变形欧拉法算法
euler modified变形欧拉法算法介绍 Euler Modified(改进)变形欧拉法算法,也被称为欧拉修改法或修正欧拉法(Euler Modified Method),是一种用于数值求解微分方程的改进方法。这种方法在传统欧拉法的基础上进…...
strcpy 函数及其缺点
目录 一、概念 二、strcpy 函数有什么缺点 1. 缺乏边界检查 2. 容易引发未定义行为 3. 不适合动态和未知长度的字符串操作 4. 替代方案的可用性 5. 效率问题 一、概念 strcpy 是 C 语言中的一个标准库函数,用于将源字符串复制到目标字符串中。它定义在 <…...

区块链-P2P(八)
前言 P2P网络(Peer-to-Peer Network)是一种点对点的网络结构,它没有中心化的服务器或者管理者,所有节点都是平等的。在P2P网络中,每个节点都可以既是客户端也是服务端,这种网络结构的优点是去中心化、可扩展…...

数据库管理的利器Navicat —— 全面测评与热门产品推荐
在数据库管理领域,Navicat无疑是一款深受欢迎的软件。作为一个强大的数据库管理和开发工具,它支持多种数据库类型,包括MySQL、MariaDB、MongoDB、SQL Server、Oracle、PostgreSQL等。本文将全面测评Navicat的核心功能,同时推荐几款…...

如何让Google收录我的网站?
其实仅仅只是收录,只要在GSC提交网址,等个两三天,一般就能收录,但收录是否会掉,这篇内容收录了是否有展现,排名,就是另外一个课题了,如果不收录,除了说明你的网站有问题&…...

03 Flask-添加配置信息
回顾之前学习的内容 02 Flask-快速上手 Flask 中最简单的web应用组成 1. 导入核心库 Flask from flask import Flask2. 实例化 web应用 注意:不要漏了 app Flask(__name__) 中的 __name__ 表示:是从当前的py文件实例化 app Flask(__name__)3. 创…...

Codes 开源研发项目管理平台——敏捷测试管理创新解决方案
前言 Codes 是国内首款重新定义 SaaS 模式的开源项目管理平台,支持云端认证、本地部署、全部功能开放,并且对30人以下团队免费。它通过整合迭代、看板、度量和自动化等功能,简化测试协同工作,使敏捷测试更易于实施。并提供低成本的…...

耗时一个月,我做了一个网页视频编辑器
最近又肝了一个多月,终于把这个网页视频编辑器做好了,下面我来简单介绍一下如何使用 注意目前该功能还处在测试阶段,可能会有很多问题,后续我会不断修复 体验地址 app.zyjj.cc 界面介绍 整个剪辑界面包括4个区,左边是…...

uniapp 做一个查看图片的组件,图片可缩放移动
因为是手机端,所以需要触摸可移动,双指放大缩小。 首先在components里建个组件 查看图片使用 uni-popup 弹窗 要注意 transform的translate和scale属性在同一标签上不会一起生效 移动就根据触摸效果进行偏移图片 缩放就根据双指距离的变大变小进行缩…...

卡车配置一键启动无钥匙进入手机控车
卡车智能一键启动无钥匙进入手机控车,通过手机应用程序与汽车内置硬件、软件的无线通信,实现对汽车的远程控制。 卡车改装一键启动的步骤包括安装门把手的感应装置、拆卸仪表台和门板,取出内部的待接线束,并将一键启动…...
计算机网络基础概念 交换机、路由器、网关、TBOX
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、VLAN是什么?二 、交换机三、路由器四、网关五、TBOX六、问题1 、网关和交换机的区别2、网关和路由器的区别 总结 前言 工作有感而发࿰…...

labview禁用8080端口
需求背景 最近电脑上安装了labview全家桶,发现idea的8080端口项目启动报错,一直提示8080端口被占用。最简单的办法就是找到8080端口的服务,然后关闭这个服务。但是我不想这么做,我想把labview的web服务器的端口给修改了。 操作教程 1、cmd查看8080端口 2、windows进程 同…...
字符串的KMP算法详解及C/C++代码实现
1. 原由 紧接上文,我们知道了暴力匹配的算法在时间运行上的缺陷,假设字符串T的长度为n,字符串P的长度为m,则整个算法的时间复杂度为O( n * m ),而对于一个复杂的现实情况而言 n >> m >> 2 (即…...

2024年数学建模比赛题目及解题代码
目录 一、引言 1. 1竞赛背景介绍 1.1.1数学建模竞赛概述 1.1.2生产过程决策问题在竞赛中的重要性 1.2 解题前准备 1.2.2 工具与资源准备 1.2.3 心态调整与策略规划 二、问题理解与分析 三、模型构建与求解 3.1 模型选择与设计 3.1.1 根据问题特性选择合适的数学模型类…...

BERT 论文逐段精读【论文精读】
BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想ÿ…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...