[Python办公]常用Python数据采集爬虫技术对比
常用的数据采集技术可以分为以下几种:
1.网页抓取(Web Scraping)
网页抓取是通过模拟浏览器行为或直接发送请求来获取网页内容的技术。其核心目标是从 HTML 网页中提取有价值的数据。
- 常用工具:requests、BeautifulSoup、Selenium、Scrapy
1.1 requests + BeautifulSoup
- 简介:requests 用于发送 HTTP 请求,BeautifulSoup 用于解析 HTML 页面。
- 优势:轻量、易于上手,适合简单的数据采集任务。组合灵活,可以与其他库(如 pandas、lxml)集成。无需浏览器,可以提高效率。
- 劣势:仅适合静态网页,对动态加载(如 JavaScript 渲染)的网页无效。对于大规模抓取任务,性能不足,缺少高级抓取功能。
1.2 Selenium
- 简介:Selenium 是一个自动化测试工具,可以驱动浏览器完成交互操作,如点击、表单填充等。适合抓取动态网页。
- 优势:可抓取动态内容,支持 JavaScript 渲染。支持模拟用户操作,如点击、滑动页面、表单提交等。可用于处理需要登录的网站。
- 劣势:资源消耗大,性能较差,尤其在大规模数据抓取时,速度较慢。需要维护浏览器的兼容性和版本更新。
1.3 Scrapy
- 简介:Scrapy 是一个用于大规模数据抓取的框架,支持多线程抓取,内置爬虫管理和数据处理机制。
- 优势:性能优越,支持异步处理,适合大规模爬取。内置许多功能,如自动处理链接、数据存储、爬取深度管理等。支持扩展,可以根据需求进行定制。
- 劣势:学习曲线较陡,复杂度较高。对于小规模或简单任务,可能显得过于笨重。
2.API 数据采集
API 是数据采集的另一种重要方式,通常由网站或平台提供公开或授权的接口供开发者使用。
- 常用工具:requests、http.client、aiohttp
2.1 requests
- 简介:requests 是最常用的 HTTP 库,可以方便地发送 HTTP 请求,获取 JSON 等格式的数据。
- 优势:使用简单、文档丰富,适合处理各种 HTTP 请求。对同步请求处理较好,适合中小规模数据采集。
- 劣势:对于大量并发请求,性能较差。
2.2 aiohttp
- 简介:aiohttp 是一个异步 HTTP 客户端库,适合处理大量并发请求。
- 优势:支持异步操作,适合大规模并发请求的场景。性能高,特别是在 I/O 密集型任务中表现优异。
- 劣势:学习曲线略高于 requests。对于小规模的数据采集,异步编程可能显得复杂。
2.3 API采集的优劣势
- 优势:数据结构化程度高,通常以 JSON 或 XML 格式返回,便于处理。法律风险较小,通常是在授权的前提下使用。效率高,不需要解析网页,减少了爬取时间。
- 劣势:受限于 API 的限制,如访问频率限制、数据种类限制、需申请权限等。对于某些平台,没有公开 API 提供。
3.自动化表单提交与下载
对于需要表单填写或文件下载的网站,数据采集还可以通过模拟表单提交和处理下载任务完成。
- 常用工具:Selenium、PyAutoGUI、requests、wget
3.1 表单提交
- 简介:通过模拟用户在网页上提交表单并下载响应文件。
- 优势:适用于需要通过复杂表单获取数据的网站。可以配合 Selenium 等工具处理 JavaScript 动态加载的表单。
- 劣势:复杂度高,特别是多层表单验证时。性能有限,不能快速处理大规模表单操作。
3.2 文件下载
- 简介:通过 HTTP 请求直接下载文件,或通过自动化工具模拟下载操作。
- 优势:可以快速获取文件数据,如 CSV、PDF 等常见格式。通过工具组合,支持复杂的文件下载场景。
- 劣势:大文件或多文件下载时需要考虑带宽和存储限制。可能需要处理文件后期的解压缩或解析操作。
4.数据采集技术对比总结
技术/工具 | 优势 | 劣势 | 适用场景 |
requests + BeautifulSoup | 简单易用,灵活性高 | 无法处理动态内容,适合小规模抓取 | 静态网页、简单数据抓取 |
Selenium | 处理动态网页和模拟用户操作 | 性能低,资源消耗大,适合小规模复杂任务 | 需要 JavaScript 渲染或交互的网站 |
Scrapy | 性能高,支持大规模并发、爬虫管理 | 学习曲线陡峭,初学者不易掌握 | 大规模、结构复杂的网页数据抓取 |
API | 数据结构化,效率高,合法性强 | 受 API 限制,需授权或频率限制 | 平台公开或授权的数据获取,特别是 JSON 数据采集 |
aiohttp | 异步操作,适合大量并发请求 | 复杂度较高,异步编程有一定学习成本 | 大规模 API 并发数据采集 |
表单提交与下载 | 可以处理复杂表单,支持文件下载 | 复杂度高,性能有限 | 需要模拟用户填写表单或下载文件的数据采集 |
总结
选择合适的采集技术需要根据具体的需求和场景来决定。对于简单的静态网页抓取,requests + BeautifulSoup 是首选;对于需要处理动态网页或复杂交互的场景,Selenium 可以胜任;而对于大规模数据采集,Scrapy 和 aiohttp 是性能和效率更优的选择。
相关文章:
[Python办公]常用Python数据采集爬虫技术对比
常用的数据采集技术可以分为以下几种: 1.网页抓取(Web Scraping) 网页抓取是通过模拟浏览器行为或直接发送请求来获取网页内容的技术。其核心目标是从 HTML 网页中提取有价值的数据。 常用工具:requests、BeautifulSoup、Selen…...

相机光学(三十七)——自动对焦原理
1.自动对焦的三种方式 目前在手机上采用的自动对焦系统包括反差对焦、相位对焦和激光对焦三种方案,下面我们来看一下它们的工作原理和相互之间的区别是什么。 1.1反差对焦【CDAF】- Contrast Detection Auto Focus 反差对焦是目前普及率最高、使用最广泛、成本相对…...
Go语言现代web开发05 指针和结构体
指针 Pointers are complex data types that store the memory address of value. Simply put, if we have a value stored in the memory address as 100 and a pointer to that value, the pointer value will be 100. The default value for a pointer is nil. Nil pointer…...
Postgresql 删除数组中的元素
extra为 {“a”: [null, 3, null],“b”: 111} 使用sql 将extra中a中的null移除 第一步: 首先先把[null, 3, null]移除, select json_agg(elem) filter ( where elem ! null ) from (select jsonb_array_elements([null,3,null]::jsonb) as elem) t;这…...

docker 多服务只暴露一个客户端
业务场景 docker部署多个服务时候,当为了安全考虑 部署了多个服务,数据库,缓存库,文件服务器啥的,如果全都暴露的话可能会增加资源侵入的风险,所以只需要挂载一个客户端端口给外部访问即可,其他服务均在内网,保障资源安全 docker 网络 可以把容器们都放在同一网络下,由于docke…...

DFS算法专题(二)——穷举vs暴搜vs深搜vs回溯vs剪枝【OF决策树】
目录 1、决策树 2、算法实战应用【leetcode】 2.1 题一:全排列 2.2.1 算法原理 2.2.2 算法代码 2.2 题二:子集 2.2.1 算法原理【策略一】 2.2.2 算法代码【策略一】 2.2.3 算法原理【策略二,推荐】 2.2.4 算法代码【策略二&#x…...
Spring Security 快速开始
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifactId></dependency> 一、认证 1、从数据中读数据完成认证 Service public class MyUserDetailsService implements UserDeta…...
Lua5.3 参考手册
《Lua 5.3 参考手册》是对 Lua 5.3 版本语言的官方定义。这份手册详细描述了 Lua 语言的语法、语义以及标准库和 C API。它是由巴西里约热内卢 Pontifical Catholic 大学的 PUC-Rio 团队开发的,并且是一个自由软件,广泛应用于世界各地的产品和项目中【9†…...

Centos如何配置阿里云的yum仓库作为yum源?
背景 Centos在国内访问官方yum源慢,可以用国内的yum源,本文以阿里云yum源为例说明。 快速命令 sudo mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak sudo wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.a…...

力扣139-单词拆分(Java详细题解)
题目链接:139. 单词拆分 - 力扣(LeetCode) 前情提要: 因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。 最近刚学完背包,所以现在的题解都是以背包问题为基础再来写的。 如果大家不懂背包问题的话&#…...

CSS —— display属性
用于指定一个元素在页面中的显示方式 HTML中标签元素大体被分为三种类型:块元素、行内元素和行内块元素 块元素 :block 1.独占一行 2.水平方向,占满它父元素的可用空间(宽度是父级的100%) 3.垂直方向,占据的…...

BTC ETF资金流入暴涨400%,市场下一步将如何发展?
近期,BTC现货ETF(交易所交易基金)市场出现了显著的资金流入,尤其是在9月10日,BTC ETF吸引了近1.17亿美元的资金流入,相较于前一天的3729万美元,暴涨了400%。这种现象引发了市场广泛关注…...

视频监控管理平台LntonAIServer视频智能分析抖动检测算法应用场景
在视频监控系统中,视频画面的稳定性对于确保监控效果至关重要。抖动现象是指视频画面中存在不稳定或频繁晃动的情况,这可能会影响视频的清晰度和可读性。LntonAIServer通过引入抖动检测功能,帮助用户及时发现并解决视频流中的抖动问题&#x…...

初识php库管理工具composer的体验【爽】使用phpword模板功能替换里面的字符串文本
需求: 做了一个租赁的项目,里面要求签署个人授权协议,里面要填写姓名,手机号,身份证号,签署日期等参数,格式如下图 格式: 如上图,word中的字符串模板变量使用${varname…...
每日一问:C++ 如何实现继承、封装和多态
每日一问:C 如何实现继承、封装和多态 C 是一门面向对象编程语言,通过继承、封装和多态这三个核心特性实现了对复杂系统的高效管理和扩展。继承让代码重用性得以提升,封装保护数据的完整性,而多态通过不同的接口实现了灵活性。本文…...

STM32常用数据采集滤波算法
例如,STM32进行滤波处理时,主要目的是处理数据采集过程中可能产生的噪声和尖刺信号。这些噪声可能来自电源干扰、传感器自身的不稳定性或其他外部因素。 1.一阶互补滤波 方法:取a0~1,本次滤波结果(1-a)本次采样值a上…...
二分系列(二分查找)9/12
一、分情况讨论 1.左闭右闭:[left,right] 因为是左闭右闭,所以left和right都能直接取到。 #这里将>放到一起,当nums[mid]>target的时候, 要更新右边界,rightmid-1,这样就把一些相同的情况也切出去了 可以理解为找的第一个…...

如何通过可视化大屏,助力智慧城市的“城市微脑”建设?
在智慧城市的宏伟蓝图中,常常面临着一个关键挑战:如何确保这些理念和技术能够真正地惠及城市的每一个角落,每一个产业,以及每一位市民。问题的核心在于城市的具体应用场景,无论是横向的社区、园区、镇街、学校、酒店、…...
何时空仓库
某仓库现存货物 s 箱,每天上午出货 m 箱、下午进货 n 箱,若s≥m>n≥0,则第 k 天将会出现空仓的情况。请你帮仓库管理员编写程序,输入s、m 和 n,计算并输出 k。 输入格式 s,m,n (s≥m>n≥0) 输出格式 k 输入样例…...

美创获评CNVD年度原创漏洞发现贡献单位!
9月10日,第21届中国网络安全年会暨网络安全协同治理分论坛在广州成功举办。会上,美创科技首次获评“CNVD年度原创漏洞发现贡献单位”。 美创科技依托第59号安全实验室,专注数据安全技术和攻防研究。凭借深厚的技术积累与优势,被遴…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...

JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...

Python环境安装与虚拟环境配置详解
本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南,适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者,都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...