YOLOv8改进 | 模块缝合 | C2f 融合Self-Calibrated Convolutions丰富特征图【CVPR2020】
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有110+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转
本文介绍一种新的自校准卷积方法,无需改变网络架构,即可增强CNN的表征能力。该方法通过内部通信扩展卷积层的视野,自适应建立长距离的空间和跨通道依赖,从而丰富特征输出。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转

目录
1. 原理
2. 将C2f_SCConv添加到yolov8网络中
2.1 C2f_SCConv代码实现
2.2 C2f_SCConv的神经网络模块代码解析
2.3 更改init.py文件
2.4 添加yaml文件
2.5 注册模块
2.6 执行程序
3. 完整代码分享
4. GFLOPs
5. 进阶
6. 总结
1. 原理
论文地址:Improving Convolutional Networks with Self-Calibrated Convolutions——点击即可跳转
官方代码:官方代码仓库——点击即可跳转
SCConv(自校准卷积)旨在通过扩大视野并整合更丰富的空间和通道信息来改进传统卷积,而无需修改整体架构或增加复杂性。
SCConv 的关键原则包括:
-
内部通信:SCConv 在每个空间位置上实现长距离空间和通道间依赖性,与传统的小核卷积相比,增强了特征图的丰富性。
-
异构卷积:滤波器被分成多个部分,每个部分处理不同的任务。一些滤波器对输入进行下采样,执行卷积,然后上采样,允许校准主卷积。
-
自校准操作:输入特征图被分成两部分,一部分由标准卷积处理,另一部分经过自校准过程,引入低分辨率嵌入。这种由下采样创建的嵌入会影响原始分辨率空间中的卷积。
-
增强的感受野:通过处理多个尺度(低分辨率和高分辨率)的特征图,SCConv 增加了每个卷积层的感受野,使其能够捕获更多的上下文信息。
-
无额外参数:尽管 SCConv 有诸多好处,但它不会引入额外参数或显著增加计算复杂度,因此非常高效,并且易于应用于现有网络。
2. 将C2f_SCConv添加到yolov8网络中
2.1 C2f_SCConv代码实现
关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中,并在该文件的__all__中添加“C2f_SCConv”
class SCConv(nn.Module):# https://github.com/MCG-NKU/SCNet/blob/master/scnet.pydef __init__(self, c1, c2, s=1, d=1, g=1, pooling_r=4):super(SCConv, self).__init__()self.k2 = nn.Sequential(nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r), Conv(c1, c2, k=3, d=d, g=g, act=False))self.k3 = Conv(c1, c2, k=3, d=d, g=g, act=False)self.k4 = Conv(c1, c2, k=3, s=s, d=d, g=g, act=False)def forward(self, x):identity = xout = torch.sigmoid(torch.add(identity, F.interpolate(self.k2(x), identity.size()[2:]))) # sigmoid(identity + k2)out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)out = self.k4(out) # k4return outclass Bottleneck_SCConv(Bottleneck):def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):super().__init__(c1, c2, shortcut, g, k, e)c_ = int(c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = SCConv(c_, c2, g=g)class C3_SCConv(C3):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e) # hidden channelsself.m = nn.Sequential(*(Bottleneck_SCConv(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))class C2f_SCConv(C2f):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):super().__init__(c1, c2, n, shortcut, g, e)self.m = nn.ModuleList(Bottleneck_SCConv(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))
2.2 C2f_SCConv的神经网络模块代码解析
C2f_SCConv
类将自校准卷积 (SCConv) 机制集成到经过修改的 C2f 块结构中,增强了其通过扩展的接受场捕获更多上下文信息的能力,同时保持了高效的计算复杂度。
-
基础结构(C2f 继承):
C2f_SCConv
继承自C2f
类,后者通常是用于融合深度学习网络中特征的自定义卷积块。这允许基于 SCConv 的块直接替换或增强现有架构中的标准卷积。 -
Bottleneck_SCConv 集成:
C2f_SCConv
的核心功能是使用Bottleneck_SCConv
,它用 SCConv 替换标准卷积。这种瓶颈结构有助于通过引入缩小的中间表示(c_
)来减少参数数量,该中间表示随后使用 SCConv 操作进行扩展。 -
SCConv 机制:
C2f_SCConv
中的每个瓶颈都使用 SCConv 来:
-
将卷积滤波器拆分为单独的部分,从而实现多尺度特征提取。
-
使用下采样生成的低分辨率嵌入来指导原始分辨率空间中的卷积过程,从而改善空间和通道级信息聚合。
-
Bottleneck_SCConv 的顺序应用:
C2f_SCConv
使用ModuleList
来包含多个Bottleneck_SCConv
实例,每个实例负责执行 SCConv 增强的转换。这些按顺序应用以捕获越来越丰富和详细的特征表示。 -
特征融合:与 C2f 类似,
C2f_SCConv
块可执行有效的特征融合,但具有 SCConv 增强卷积,这提高了模型收集长距离空间依赖性的能力,使最终的特征图更具辨别性。
总体而言,C2f_SCConv
的主要目标是通过将 SCConv 嵌入 C2f 块来改进特征表示,从而增强空间和通道特征提取,而不会显着增加计算负荷。
2.3 更改init.py文件
关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数
然后在下面的__all__中声明函数
2.4 添加yaml文件
关键步骤三:在/ultralytics/ultralytics/cfg/models/v8下面新建文件yolov8_C2f_SCConv.yaml文件,粘贴下面的内容
- OD【目标检测】
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f_SCConv, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f_SCConv, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f_SCConv, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f_SCConv, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f_SCConv, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f_SCConv, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f_SCConv, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f_SCConv, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
- Seg【语义分割】
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f_SCConv, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f_SCConv, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f_SCConv, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f_SCConv, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f_SCConv, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f_SCConv, [256]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f_SCConv, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f_SCConv, [1024]] # 21 (P5/32-large)- [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
温馨提示:因为本文只是对yolov8基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。不明白的同学可以看这篇文章: yolov8yaml文件解读——点击即可跳转
# YOLOv8n
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.25 # layer channel multiple
max_channels: 1024 # max_channels# YOLOv8s
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
max_channels: 1024 # max_channels# YOLOv8l
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
max_channels: 512 # max_channels# YOLOv8m
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
max_channels: 768 # max_channels# YOLOv8x
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple
max_channels: 512 # max_channels
2.5 注册模块
关键步骤四:在task.py的parse_model函数中注册
2.6 执行程序
在train.py中,将model的参数路径设置为yolov8_C2f_SCConv.yaml的路径
建议大家写绝对路径,确保一定能找到
from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Pathif __name__ == '__main__':# 加载模型model = YOLO("ultralytics/cfg/v8/yolov8.yaml") # 你要选择的模型yaml文件地址# Use the modelresults = model.train(data=r"你的数据集的yaml文件地址",epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem) # 训练模型
🚀运行程序,如果出现下面的内容则说明添加成功🚀
from n params module arguments0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]2 -1 1 12032 ultralytics.nn.modules.block.C2f_SCConv [32, 32, 1, True]3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]4 -1 2 86784 ultralytics.nn.modules.block.C2f_SCConv [64, 64, 2, True]5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]6 -1 2 345600 ultralytics.nn.modules.block.C2f_SCConv [128, 128, 2, True]7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]8 -1 1 755712 ultralytics.nn.modules.block.C2f_SCConv [256, 256, 1, True]9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1]12 -1 1 222208 ultralytics.nn.modules.block.C2f_SCConv [384, 128, 1]13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]15 -1 1 55808 ultralytics.nn.modules.block.C2f_SCConv [192, 64, 1]16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]18 -1 1 197632 ultralytics.nn.modules.block.C2f_SCConv [192, 128, 1]19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]21 -1 1 788480 ultralytics.nn.modules.block.C2f_SCConv [384, 256, 1]22 [15, 18, 21] 1 897664 ultralytics.nn.modules.head.Detect [80, [64, 128, 256]]
YOLOv8_C2f_SCConv summary: 345 layers, 4104336 parameters, 4104320 gradients, 10.1 GFLOPs
3. 完整代码分享
https://pan.baidu.com/s/1CjmGgbqzXZmmUDCLcON8CQ?pwd=6uwj
提取码: 6uwj
4. GFLOPs
关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution
未改进的YOLOv8nGFLOPs
改进后的GFLOPs
5. 进阶
可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果
6. 总结
自校准卷积 (SCConv) 旨在通过扩展感受野并结合更丰富的上下文信息(包括空间和跨通道信息)来增强传统卷积运算,而无需修改整体网络架构或添加额外参数。它将卷积滤波器划分为多个部分,每个部分都发挥着不同的作用。输入的一部分被下采样并转换为低分辨率嵌入,然后被上采样并用于指导原始分辨率空间中的卷积过程。这种自校准机制使 SCConv 能够捕获长距离空间依赖性和通道间相关性,从而提高特征图的判别能力。该方法增加了感受野,使每个空间位置能够自适应地从更大的区域收集信息,从而生成更详细、更具代表性的特征,同时保持计算效率。
相关文章:

YOLOv8改进 | 模块缝合 | C2f 融合Self-Calibrated Convolutions丰富特征图【CVPR2020】
秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效…...

跨境反向代购淘宝京东商品系统的商品价格详情等数据如何轻松自动化获取?
在跨境电商领域,反向代购系统逐渐成为连接国内外市场的重要桥梁。随着技术的不断发展和市场的日益成熟,如何高效、准确地自动化获取淘宝、京东等电商平台的商品价格、详情等数据,成为跨境反向代购系统开发者必须面对的重要课题。本文将详细介…...

初始爬虫5
响应码: 数据处理: re模块(正则表达式) re模块是Python中用于正则表达式操作的标准库。它提供了一些功能强大的方法来执行模式匹配和文本处理。以下是re模块的一些常见用法及其详细说明: 1. 基本用法 1.1 匹配模式 …...

深度盘点:2024年企业最喜欢用的WMS仓库管理系统有哪些?
本文将列举国内外知名的仓库管理系统,从每个系统的适用范围、核心功能、特点来为大家解读。为企业选型提供参考! WMS系统是Warehouse Management System(仓库管理系统)的简称,它是一个帮助企业和仓库管理者高效管理仓库…...
qt如何通过特定字符将字符串拆分写入输入?
在Qt中,处理字符串并基于特定字符拆分字符串然后将其写入(比如输入控件、文件等)是一项常见的任务。Qt提供了丰富的字符串处理功能,其中最常用的类是QString。以下是一个简单的示例,展示如何使用Qt和QString类基于特定…...

结构体实现位段
目录 1.什么是位段 2.位段的计算 3. 位段的内存分配 4.位段的跨平台问题 5.位段的应⽤ 6.位段使⽤的注意事项 1.什么是位段 段位的声明和结构体是类似的,但有两个不同之处: 1. 位段的成员必须是 int ,unsigned int,或 sign…...
刷题DAY35
判断回文数 题目:MM们都爱美,“回文”就是一种非常美的特殊的数或者文字短语,他们无论是顺读还是倒读,结果都一样。例如:12321, 55555,45554。如果GG们动不动来一段回文向MM们表达一下…...

LVS--负载均衡调度器
文章目录 集群和分布式集群分布式 LVS介绍LVS特点LVS工作原理LVS集群架构 LVS集群中的术语CIPVIPRSDIPRIP LVS集群的工作模式NAT模式DR模式DR的工作原理DR的特点:DR的网络配置1.配置负载均衡器2.配置后端服务器lo接口的作用 3.测试连接: DR的典型应用场景 TUN模式 L…...
windows@共享网络共享打印机@局域网内远程调用打印机打印
文章目录 abstract流程简述预备工作启动服务🎈启用网络发现和共享开关检查共享密码保护(可选) 相关概念通过GUI设置局域网共享打印机使用开始菜单直接跳转到打印机设置逐步操作 命令行配置方式使用net命令共享打印机使用powershell相关模块配置 使用PowerShell 配置…...
sql格式化工具
1.在线格式化工具:https://www.qianbo.com.cn/Tool/Beautify/Sql-Formatter.html 2. 格式化后用拼接 string sql " SELECT rack.rackRow,rack.rackColumn,rack.rackLayer FROM rack LEFT JOIN TaskListON rack.rackColumn TaskList.Unload_ColAND rack.rackRow TaskL…...
[Python办公]常用Python数据采集爬虫技术对比
常用的数据采集技术可以分为以下几种: 1.网页抓取(Web Scraping) 网页抓取是通过模拟浏览器行为或直接发送请求来获取网页内容的技术。其核心目标是从 HTML 网页中提取有价值的数据。 常用工具:requests、BeautifulSoup、Selen…...

相机光学(三十七)——自动对焦原理
1.自动对焦的三种方式 目前在手机上采用的自动对焦系统包括反差对焦、相位对焦和激光对焦三种方案,下面我们来看一下它们的工作原理和相互之间的区别是什么。 1.1反差对焦【CDAF】- Contrast Detection Auto Focus 反差对焦是目前普及率最高、使用最广泛、成本相对…...
Go语言现代web开发05 指针和结构体
指针 Pointers are complex data types that store the memory address of value. Simply put, if we have a value stored in the memory address as 100 and a pointer to that value, the pointer value will be 100. The default value for a pointer is nil. Nil pointer…...
Postgresql 删除数组中的元素
extra为 {“a”: [null, 3, null],“b”: 111} 使用sql 将extra中a中的null移除 第一步: 首先先把[null, 3, null]移除, select json_agg(elem) filter ( where elem ! null ) from (select jsonb_array_elements([null,3,null]::jsonb) as elem) t;这…...

docker 多服务只暴露一个客户端
业务场景 docker部署多个服务时候,当为了安全考虑 部署了多个服务,数据库,缓存库,文件服务器啥的,如果全都暴露的话可能会增加资源侵入的风险,所以只需要挂载一个客户端端口给外部访问即可,其他服务均在内网,保障资源安全 docker 网络 可以把容器们都放在同一网络下,由于docke…...

DFS算法专题(二)——穷举vs暴搜vs深搜vs回溯vs剪枝【OF决策树】
目录 1、决策树 2、算法实战应用【leetcode】 2.1 题一:全排列 2.2.1 算法原理 2.2.2 算法代码 2.2 题二:子集 2.2.1 算法原理【策略一】 2.2.2 算法代码【策略一】 2.2.3 算法原理【策略二,推荐】 2.2.4 算法代码【策略二&#x…...
Spring Security 快速开始
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifactId></dependency> 一、认证 1、从数据中读数据完成认证 Service public class MyUserDetailsService implements UserDeta…...
Lua5.3 参考手册
《Lua 5.3 参考手册》是对 Lua 5.3 版本语言的官方定义。这份手册详细描述了 Lua 语言的语法、语义以及标准库和 C API。它是由巴西里约热内卢 Pontifical Catholic 大学的 PUC-Rio 团队开发的,并且是一个自由软件,广泛应用于世界各地的产品和项目中【9†…...

Centos如何配置阿里云的yum仓库作为yum源?
背景 Centos在国内访问官方yum源慢,可以用国内的yum源,本文以阿里云yum源为例说明。 快速命令 sudo mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak sudo wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.a…...

力扣139-单词拆分(Java详细题解)
题目链接:139. 单词拆分 - 力扣(LeetCode) 前情提要: 因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。 最近刚学完背包,所以现在的题解都是以背包问题为基础再来写的。 如果大家不懂背包问题的话&#…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...

GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...