当前位置: 首页 > news >正文

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

目录

一、引言 

二、文本生成(text-generation)

2.1 概述

2.2 家谱树谱——encoder or decoder is a problem

2.3 pipeline参数

2.3.1 pipeline对象实例化参数

2.3.2 pipeline对象使用参数 ​​​​​​​

2.3.3 pipeline返回参数 ​​​​​​​​​​​​​​

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍NLP自然语言处理的第六篇:文本生成(text-generation),在huggingface库内有13.4万个文本生成(text-generation))模型,当仁不让为最重要的task,当前主流的大语言模型,比如国外的llama3、gemma、Phi、GPT,国内的Qwen、Baichuan都属于这个任务。

二、文本生成(text-generation)

2.1 概述

生成文本是根据一段文本生成新文本的任务。例如,这些模型可以填充不完整的文本或释义。

2.2 家谱树谱——encoder or decoder is a problem

关于各家大语言模型(LLM)的原理、训练、部署、推理之前讲了非常多,本篇博文不再进行复述,如果需要的话可以翻我之前的博客,非常用心与详细。今天主要带大家看一下大语言模型(LLM)的家族树谱。

 主要分为

  • Encoder-Only,仅编码器模型:主要使用transformer的encode部分进行层层堆叠,多用于掩码任务,通过上下文决定缺失的内容,做填空任务。代表模型为大名鼎鼎的BERT,以及他的衍生品RoBERTa、DeBERTa、DistilBERT等,当然还有早期的FastText、Word2Vec等 
  • Encoder-Decoder联合体:将transformer的编码器和解码器结合使用,代表模型为GLM、T5、BART等
  • Decoder-Only,仅解码器模型:主要使用transformer的decode部分,多用于生成型的任务,基于前面提供的信息,生成后面的内容。代表模型为GPT、BLOOM、Claude等

2.3 pipeline参数

2.3.1 pipeline对象实例化参数

  • model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • tokenizer ( PreTrainedTokenizer ) — 管道将使用 tokenizer 来为模型编码数据。此对象继承自 PreTrainedTokenizer。
  • modelcardstrModelCard可选) — 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
  • taskstr,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。
  • args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
  • deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。

2.3.2 pipeline对象使用参数 ​​​​​​​

  • text_inputsstrList[str],List[Dict[str, str]],或List[List[Dict[str, str]]])— 需要完成的一个或多个提示(或一个提示列表)。如果传递了字符串或字符串列表,则此管道将继续每个提示。或者,可以传递“聊天”(以带有“role”和“content”键的字典列表的形式),或传递此类聊天的列表。传递聊天时,将使用模型的聊天模板对其进行格式化,然后再将其传递给模型。
  • return_tensors ( bool可选,默认为False) — 是否在输出中返回预测的张量(作为标记索引)。如果设置为 True,则不返回解码后的文本。
  • return_textbool可选,默认为True)— 是否在输出中返回解码后的文本。
  • return_full_textbool可选,默认为True)— 如果设置为,False则仅返回添加的文本,否则返回全文。仅当 return_text设置为 True 时才有意义。
  • clean_up_tokenization_spacesbool可选,默认为True)—是否清理文本输出中可能出现的额外空格。
  • prefixstr可选)— 添加到提示的前缀。
  • handle_long_generationstr可选)— 默认情况下,此管道不处理长生成(以某种形式超出模型最大长度的生成)。
  • generate_kwargsdict可选)——传递给模型的生成方法的附加关键字参数(请参阅此处与您的框架相对应的生成方法)。

2.3.3 pipeline返回参数 ​​​​​​​​​​​​​​

  • generated_textstr,出现时间return_text=True)——生成的文本。
  • generated_token_idstorch.Tensortf.Tensor,当存在时return_tensors=True)— 生成文本的标记 ID。

2.4 pipeline实战

本文实战方面只对pipeline的使用方法进行阐述,每家的模型都有自己的参数、范式,更详细的使用可以翻看我之前的博文,写的全面一些。这里介绍两种pipeline使用方法:

  • 针对基础模型,直接返回补全的结果。
  • 针对对话模型,它还可以接受一个或多个聊天,在这种情况下,pipeline将以聊天模式运行,并通过添加其响应来继续聊天。每个聊天都采用字典列表的形式,其中每个字典包含“role”和“context”键
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"from transformers import pipelinegenerator = pipeline(task="text-generation",model= "openai-community/gpt2" )
output=generator( "我不敢相信你做了这样的事 " , do_sample= False )
print(output)generator = pipeline(task="text-generation",model= "HuggingFaceH4/zephyr-7b-beta" )
output=generator([{ "role" : "user" , "content" : "法国的首都是什么?用一个词回答。" }], do_sample= False , max_new_tokens= 2 )
print(output)

执行后,自动下载模型文件并进行识别:

2.5 模型排名

在huggingface上,我们将文本生成(text-generation)模型按下载量从高到低排序,总计13.5万个模型,可以说是huggingface上最多的任务类别了。下载排名第一的为GPT的第2代模型——gpt2,llama3、qwen2的小尺寸模型也有上榜。

三、总结

本文对transformers之pipeline的文本生成(text-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文本生成(text-generation)模型。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)​​​​​​​

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)​​​​​​​

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

相关文章:

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

目录 一、引言 二、文本生成(text-generation) 2.1 概述 2.2 家谱树谱——encoder or decoder is a problem 2.3 pipeline参数 2.3.1 pipeline对象实例化参数 2.3.2 pipeline对象使用参数 ​​​​​​​ 2.3.3 pipeline返回参数 ​​​​​​​…...

判断当前用户登录时常是否超过两个小时

有一个签到功能需要用户登录时间超过两个小时才可以签到 1. 存储登录时间戳 login() { // 假设这是登录后的操作 const currentTime new Date().getTime(); // 获取当前时间戳 localStorage.setItem(loginTimestamp, currentTime.toString()); // 存储登录时间戳 // 其他…...

nacos明明配置了远程连接地址却一直连接本地的详细配置解释

大家时间都很珍贵,我直接把方法放这 这个是yml文件,我们配置yml文件的时候,一定要把他的服务发现地址写了 这里是针对bootstrap做出的文件,注意名字,要和我们在yml文件里面的spring名字一样 yml discovery:是发现的意…...

Superset二次开发之源码 run-server.sh 分析

背景: 如果基于docker方式部署Superset项目,Dockerfile文件末尾指向了docker-ci.sh,而docker-ci.sh 脚本又指向了run-server.sh。因此我们重点分析一下run-server脚本 路径 docker\run-server.sh #!/usr/bin/env bashHYPHEN_SYMBOL-gunicorn…...

Java 之四种内部类详解

在 Java 中,除了传统的类定义方式之外,还有一种特殊的类定义方式——内部类。内部类定义在另一个类的内部,可以访问外部类的成员,这使得代码更加灵活和可读性更强。本文将详细讲解 Java 中四种内部类的类型:成员内部类…...

03:手动可变电阻

可变电阻 1、电位器2、变阻器/数字电位器2.1:变阻器2.2:数字电位器 3、电位器锥度4、寄生电感/电容 1、电位器 如上图所示:将可变的电阻作为分压器,那么这种可变的电阻就是电位器。例如:将L1连接负极,L3连接…...

嵌入式Linux电池管理(TODO)

(TODO) 在树莓派3B上使用电池供电需要考虑多个方面,包括电源管理、硬件连接和软件配置。以下是详细的步骤和建议: 1. 选择合适的电池 树莓派3B需要5V的电源供电,通常电流需求在2.5A左右。常见的电池选择包括&#xff1…...

Python 求亲和数

亲和数(Amicable Numbers)是指两个不同的正整数,它们的真因数(即除去本身的所有因数)之和与对方的数相等。 def sum_of_proper_divisors(n):"""计算一个数的真因子之和"""divisors_su…...

【C++】——vector模拟实现和迭代器失效问题

文章目录 模拟实现vector基本成员变量vector的构造与析构vector迭代器vector容量vector元素访问vector修改操作 vector迭代器失效问题什么是迭代器失效1.插入元素导致迭代器失效2.删除元素导致迭代器失效3.重新分配空间导致迭代器失效 如何解决迭代器失效问题 模拟实现 vector…...

USB 3.1 标准 A 型连接器及其引脚分配

USB 3.1 标准 A 型连接器 USB 3.1 标准 A 型连接器被定义为主机连接器。它具有与 USB 2.0 标准 A 型连接器相同的配合接口,但增加了另外两对差分信号和一个接地引脚。 USB 3.1 标准 A 型插座可以接受 USB 3.1 标准 A 型插头或 USB 2.0 标准 A 型插头。类似地&…...

机器学习文献|基于循环细胞因子特征,通过机器学习算法预测NSCLC免疫治疗结局

今天我们一起学习一篇最近发表在Journal for immunotherapy of cancer (IF 10.9)上的文章,Machine learning for prediction of immunotherapeutic outcome in non-small-cell lung cancer based on circulating cytokine signatures[基于循环…...

Qt 实现自定义截图工具

目录 Qt 实现自定义截图工具实现效果图PrintScreen 类介绍PrintScreen 类的主要特性 逐步实现第一步:类定义第二步:初始化截图窗口第三步:处理鼠标事件第四步:计算截图区域第五步:捕获和保存图像 完整代码PrintScreen.…...

第15-05章:获取运行时类的完整结构

我的后端学习大纲 我的Java学习大纲 6.1.第一组方法API: 1.API列表:java.lang.Class 类: 2.代码测试: public class ReflectionUtils{ puvblic static void main(String[] args){}// 第一组Testpublic void api_01{//上面截图的代码......…...

【Kubernetes】K8s 的鉴权管理(二):基于属性 / 节点 / Webhook 的访问控制

K8s 的鉴权管理(二):基于属性 / 节点 / Webhook 的访问控制 1.基于属性的访问控制(ABAC 鉴权)2.基于节点的访问控制(node 鉴权)2.1 读取操作2.2 写入操作 3.基于 Webhook 的访问控制3.1 基于 We…...

Java面试、技巧、问题、回复,资源面面观

入门 先了解一下面试流程 复习 Java 基础知识: 温习 Java 编程的核心概念,包括数据类型、变量、循环、数组和面向对象的编程原则。数据结构和算法: 加强您对 Java 编程中使用的基本数据结构和算法的理解。练习编码: 在各种平台上解…...

深入理解Elasticsearch的`_source`字段与索引优化

在Elasticsearch (ES) 中,_source字段是一个关键组件,它不仅决定了数据的存储方式,还影响到查询时返回的内容。在某些场景下,我们可以通过配置_source来优化存储和性能,尤其是当我们希望减少存储空间或避免返回某些字段…...

Pikachu靶场

先来点鸡汤,少就是多,慢就是快。 环境搭建 攻击机kali 192.168.146.140 靶机win7 192.168.146.161 下载zip,pikachu - GitCode 把下载好的pikachu-master,拖进win7,用phpstudy打开网站根目录,.....再用…...

TS axios封装

方式一 service/request/request.ts import axios from axios import { ElLoading } from element-plus import type { AxiosRequestConfig, AxiosInstance, AxiosResponse } from axios import type { ILoadingInstance } from element-plus/lib/el-loading/src/loading.typ…...

学会使用西门子博途Startdrive中的测量功能

工程师在驱动调试过程中,往往需要对驱动系统的性能进行分析及优化,比如说借助于调试软件中的驱动器测量功能,可以得到驱动系统的阶跃响应、波特图等,以此为依据工程师可以调整速度控制器、电流控制器的相关参数,使驱动…...

Spring Security认证与授权

1 Spring Security介绍 Spring Security是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架。由于它是Spring生态系统中的一员,因此它伴随着整个Spring生态系统不断修正、升级,在spring boot项目中加入springsecurity更是…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...