当前位置: 首页 > news >正文

K近邻算法_分类鸢尾花数据集

import numpy as np
import pandas as pd 
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

1.数据预处理

iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
# 分类标签数据
df['class'] = iris.target
# 数值转为文字
df['class'] = df['class'].map({0: iris.target_names[0], 1: iris.target_names[1], 2: iris.target_names[2]})
df.head()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)class
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
x = iris.data
y = iris.target.reshape(-1, 1)
print("x shape: " , x.shape)
print("y shape: ", y.shape)
x shape:  (150, 4)
y shape:  (150, 1)
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.3, random_state=42, stratify=y)

2. 模型实现

# L1 距离
def l1_distance(a, b):return np.sum(np.abs(a - b), axis = 1)#L2 距离
def l2_distance(a, b):return np.sqrt(np.sum((a - b)**2, axis = 1))# K近邻模型
class KnnModel(object):def __init__(self, k_neighbors = 1, distance_func = l1_distance):self.k_neighbors = k_neighbors;self.distance_func = distance_func#不需要训练,只是预测时用于计算预测点的距离def fit(self, x, y):self.x_train = xself.y_train = ydef predict(self, test):y_predict = np.zeros((test.shape[0],1), dtype=self.y_train.dtype)for i, x_test in enumerate(test):# 计算 测试点和训练集的距离distances = self.distance_func(self.x_train, x_test)# 按照距离大小排序,取出索引sort_index = np.argsort(distances)# 取出前 k 个值neighbors_predict = self.y_train[sort_index[:self.k_neighbors]].ravel()# 取出前 k 个值里面出现最多的数y_predict[i] = np.argmax(np.bincount(neighbors_predict))return y_predict

3.测试

knn = KnnModel(k_neighbors = 9)
knn.fit(x_train, y_train);result_list = []
for df in [1, 2]:knn.distance_func = l1_distance if pd == 1 else l2_distancefor k in range(1, 20 , 2):knn.k_neighbors = ky_predict = knn.predict(x_test)acc = accuracy_score(y_test, y_predict) * 100result_list.append([k, 'l1_dist' if df == 1 else 'l2_dist', acc])result_df = pd.DataFrame(result_list, columns=['k', '距离函数', '准确率'])
print(result_df)
     k     距离函数        准确率
0    1  l1_dist  93.333333
1    3  l1_dist  95.555556
2    5  l1_dist  97.777778
3    7  l1_dist  95.555556
4    9  l1_dist  95.555556
5   11  l1_dist  93.333333
6   13  l1_dist  93.333333
7   15  l1_dist  95.555556
8   17  l1_dist  95.555556
9   19  l1_dist  95.555556
10   1  l2_dist  93.333333
11   3  l2_dist  95.555556
12   5  l2_dist  97.777778
13   7  l2_dist  95.555556
14   9  l2_dist  95.555556
15  11  l2_dist  93.333333
16  13  l2_dist  93.333333
17  15  l2_dist  95.555556
18  17  l2_dist  95.555556
19  19  l2_dist  95.555556

相关文章:

K近邻算法_分类鸢尾花数据集

import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score1.数据预处理 iris load_iris() df pd.DataFrame(datairis.data, columnsiris.featur…...

nacos和eureka的区别详解

Nacos 和 Eureka 都是服务发现和注册中心的解决方案,但它们在功能、设计和使用场景上有所不同。以下是它们的详细区别: 1. 基本概念 Eureka:是由 Netflix 开发的服务发现工具。它主要用于 Java 微服务架构中的服务注册与发现。Eureka 通过 R…...

AI大模型包含哪些些技术?

Prompt Prompt提示是模型接收以生成响应或完成任务的初始文本输入。 我们给AI一组Prompt输入,用于指导模型生成响应以执行任务。这个输入可以是一个问题、一段描述、一组关键词,或任何其他形式的文本,用于引导模型产生特定内容的响应。 Tra…...

分布式技术概览

文章目录 分布式技术1. 分布式数据库(Distributed Databases)2. 分布式文件系统(Distributed File Systems)3. 分布式哈希表(Distributed Hash Tables, DHTs)4. 分布式缓存(Distributed Caching…...

动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习

动手学习RAG: 向量模型动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习动手学习RAG:迟交互模型colbert微调实践 bge-m3 1. 环境准备 pip install transformers pip install open-retrievals注意安装时是pip install open-retrievals,但调用时只…...

Nacos rce-0day漏洞复现(nacos 2.3.2)

Nacos rce-0day漏洞复现(nacos 2.3.2) NACOS是 一个开源的服务发现、配置管理和服务治理平台,属于阿里巴巴的一款开源产品。影像版本:nacos2.3.2或2.4.0版本指纹:fofa:app“NACOS” 从 Github 官方介绍文档可以看出国…...

yjs04——matplotlib的使用(多个坐标图)

1.多个坐标图与一个图的折线对比 1.引入包;字体(同) import matplotlib.pyplot as plt import random plt.rcParams[font.family] [SimHei] plt.rcParams[axes.unicode_minus] False 2.创建幕布 2.1建立图层幕布 一个图:plt.fig…...

MOS管和三极管有什么区别?

MOS管是基于金属-氧化物-半导体结构的场效应晶体管,它的控制电压作用于氧化物层,通过调节栅极电势来控制源漏电流。MOS管是FET中的一种,现主要用增强型MOS管,分为PMOS和NMOS。 MOS管的三个极分别是G(栅极),D(漏极)&…...

医院多参数空气质量监控和压差监测系统简介@卓振思众

在现代医院管理中,确保患者和医疗人员的健康与安全是首要任务。为实现这一目标,医院需要依赖高科技设施来维持最佳的环境条件。特别是,多参数空气质量监测系统和压差监测系统在这一方面发挥了不可替代的作用。【卓振思众】多参数空气质量监测…...

[项目实战]EOS多节点部署

文章总览:YuanDaiMa2048博客文章总览 EOS多节点部署 (一)环境设计(二)节点配置(三)区块信息同步(四)启动节点并验证同步EOS单节点的环境如何配置 (一&#xf…...

setImmediate() vs setTimeout() 在 JavaScript 中的区别

setImmediate() vs setTimeout() 在 JavaScript 中的区别 在 JavaScript 中,setImmediate() 和 setTimeout() 都用于调度任务,但它们的工作方式不同。 JavaScript 的异步特性 JavaScript 以其非阻塞、异步行为而闻名,尤其是在 Node.js 环境…...

【Java文件操作】文件系统操作文件内容操作

文件系统操作 常见API 在Java中,File类是用于文件和目录路径名的抽象表示。以下是一些常见的方法: 构造方法: File(String pathname):根据给定的路径创建一个File对象。File(String parent, String child):根据父路径…...

关于若依flowable的安装

有个项目要使用工作流功能,在网上看了flowable的各种资料,最后选择用若依RuoYi-Vue-Flowable这个项目来迁移整合。 一、下载项目代码: 官方项目地址:https://gitee.com/shenzhanwang/Ruoyi-flowable/ 二、新建数据库&#xff…...

猜数字困难版(1-10000)

小游戏&#xff0c;通过提示每次猜高或猜低以及每次猜中的位数&#xff0c;10次内猜中1-10000的一个数。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthde…...

ASPICE术语表

术语来源描述活动Automotive SPICE V4.0由利益相关方或参与方执行的任务用参数Automotive SPICE V4.0应用参数是包含了在系统或软件层级可被更改的数据的软件变量&#xff0c;他们影响系统或软件的行为和属性。应用参数的概念有两种表达方式:规范(分别包括变量名称、值域范围、…...

Knife4j:打造优雅的SpringBoot API文档

1. 为什么需要API文档&#xff1f; 在现代软件开发中,API文档的重要性不言而喻。一份清晰、准确、易于理解的API文档不仅能够提高开发效率,还能降低前后端沟通成本。今天,我们要介绍的Knife4j正是这样一款强大的API文档生成工具,它专为Spring Boot项目量身打造,让API文档的生成…...

数学建模笔记—— 多目标规划

数学建模笔记—— 多目标规划 多目标规划1. 模型原理1.1 多目标规划的一般形式1.2 多目标规划的解1.3 多目标规划的求解 2. 典型例题3. matlab代码实现 多目标规划 多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。又称多目标最优化。通常记为 …...

【鸿蒙HarmonyOS NEXT】页面之间相互传递参数

【鸿蒙HarmonyOS NEXT】页面之间相互传递参数 一、环境说明二、页面之间相互传参 一、环境说明 DevEco Studio 版本&#xff1a; API版本&#xff1a;以12为主 二、页面之间相互传参 说明&#xff1a; 页面间的导航可以通过页面路由router模块来实现。页面路由模块根据页…...

SonicWall SSL VPN曝出高危漏洞,可能导致防火墙崩溃

近日&#xff0c;有黑客利用 SonicWall SonicOS 防火墙设备中的一个关键安全漏洞入侵受害者的网络。 这个不当访问控制漏洞被追踪为 CVE-2024-40766&#xff0c;影响到第 5 代、第 6 代和第 7 代防火墙。SonicWall于8月22日对其进行了修补&#xff0c;并警告称其只影响防火墙的…...

关于SAP标准委外(带料外协)采购订单信息

业务背景&#xff1a; 业务部门提出需要将售料外协方式变更为带料外协&#xff0c;带料外协实际业务存在一个委外订单存在多次发料&#xff0c;且每次发票需要进行齐套发料&#xff0c;不同批次的发料涉及物料替代。在半成品收货时需要进行对发料的组件进行扣料。 需求分析&a…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...