当前位置: 首页 > news >正文

K近邻算法_分类鸢尾花数据集

import numpy as np
import pandas as pd 
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

1.数据预处理

iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
# 分类标签数据
df['class'] = iris.target
# 数值转为文字
df['class'] = df['class'].map({0: iris.target_names[0], 1: iris.target_names[1], 2: iris.target_names[2]})
df.head()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)class
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa
x = iris.data
y = iris.target.reshape(-1, 1)
print("x shape: " , x.shape)
print("y shape: ", y.shape)
x shape:  (150, 4)
y shape:  (150, 1)
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.3, random_state=42, stratify=y)

2. 模型实现

# L1 距离
def l1_distance(a, b):return np.sum(np.abs(a - b), axis = 1)#L2 距离
def l2_distance(a, b):return np.sqrt(np.sum((a - b)**2, axis = 1))# K近邻模型
class KnnModel(object):def __init__(self, k_neighbors = 1, distance_func = l1_distance):self.k_neighbors = k_neighbors;self.distance_func = distance_func#不需要训练,只是预测时用于计算预测点的距离def fit(self, x, y):self.x_train = xself.y_train = ydef predict(self, test):y_predict = np.zeros((test.shape[0],1), dtype=self.y_train.dtype)for i, x_test in enumerate(test):# 计算 测试点和训练集的距离distances = self.distance_func(self.x_train, x_test)# 按照距离大小排序,取出索引sort_index = np.argsort(distances)# 取出前 k 个值neighbors_predict = self.y_train[sort_index[:self.k_neighbors]].ravel()# 取出前 k 个值里面出现最多的数y_predict[i] = np.argmax(np.bincount(neighbors_predict))return y_predict

3.测试

knn = KnnModel(k_neighbors = 9)
knn.fit(x_train, y_train);result_list = []
for df in [1, 2]:knn.distance_func = l1_distance if pd == 1 else l2_distancefor k in range(1, 20 , 2):knn.k_neighbors = ky_predict = knn.predict(x_test)acc = accuracy_score(y_test, y_predict) * 100result_list.append([k, 'l1_dist' if df == 1 else 'l2_dist', acc])result_df = pd.DataFrame(result_list, columns=['k', '距离函数', '准确率'])
print(result_df)
     k     距离函数        准确率
0    1  l1_dist  93.333333
1    3  l1_dist  95.555556
2    5  l1_dist  97.777778
3    7  l1_dist  95.555556
4    9  l1_dist  95.555556
5   11  l1_dist  93.333333
6   13  l1_dist  93.333333
7   15  l1_dist  95.555556
8   17  l1_dist  95.555556
9   19  l1_dist  95.555556
10   1  l2_dist  93.333333
11   3  l2_dist  95.555556
12   5  l2_dist  97.777778
13   7  l2_dist  95.555556
14   9  l2_dist  95.555556
15  11  l2_dist  93.333333
16  13  l2_dist  93.333333
17  15  l2_dist  95.555556
18  17  l2_dist  95.555556
19  19  l2_dist  95.555556

相关文章:

K近邻算法_分类鸢尾花数据集

import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score1.数据预处理 iris load_iris() df pd.DataFrame(datairis.data, columnsiris.featur…...

nacos和eureka的区别详解

Nacos 和 Eureka 都是服务发现和注册中心的解决方案,但它们在功能、设计和使用场景上有所不同。以下是它们的详细区别: 1. 基本概念 Eureka:是由 Netflix 开发的服务发现工具。它主要用于 Java 微服务架构中的服务注册与发现。Eureka 通过 R…...

AI大模型包含哪些些技术?

Prompt Prompt提示是模型接收以生成响应或完成任务的初始文本输入。 我们给AI一组Prompt输入,用于指导模型生成响应以执行任务。这个输入可以是一个问题、一段描述、一组关键词,或任何其他形式的文本,用于引导模型产生特定内容的响应。 Tra…...

分布式技术概览

文章目录 分布式技术1. 分布式数据库(Distributed Databases)2. 分布式文件系统(Distributed File Systems)3. 分布式哈希表(Distributed Hash Tables, DHTs)4. 分布式缓存(Distributed Caching…...

动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习

动手学习RAG: 向量模型动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习动手学习RAG:迟交互模型colbert微调实践 bge-m3 1. 环境准备 pip install transformers pip install open-retrievals注意安装时是pip install open-retrievals,但调用时只…...

Nacos rce-0day漏洞复现(nacos 2.3.2)

Nacos rce-0day漏洞复现(nacos 2.3.2) NACOS是 一个开源的服务发现、配置管理和服务治理平台,属于阿里巴巴的一款开源产品。影像版本:nacos2.3.2或2.4.0版本指纹:fofa:app“NACOS” 从 Github 官方介绍文档可以看出国…...

yjs04——matplotlib的使用(多个坐标图)

1.多个坐标图与一个图的折线对比 1.引入包;字体(同) import matplotlib.pyplot as plt import random plt.rcParams[font.family] [SimHei] plt.rcParams[axes.unicode_minus] False 2.创建幕布 2.1建立图层幕布 一个图:plt.fig…...

MOS管和三极管有什么区别?

MOS管是基于金属-氧化物-半导体结构的场效应晶体管,它的控制电压作用于氧化物层,通过调节栅极电势来控制源漏电流。MOS管是FET中的一种,现主要用增强型MOS管,分为PMOS和NMOS。 MOS管的三个极分别是G(栅极),D(漏极)&…...

医院多参数空气质量监控和压差监测系统简介@卓振思众

在现代医院管理中,确保患者和医疗人员的健康与安全是首要任务。为实现这一目标,医院需要依赖高科技设施来维持最佳的环境条件。特别是,多参数空气质量监测系统和压差监测系统在这一方面发挥了不可替代的作用。【卓振思众】多参数空气质量监测…...

[项目实战]EOS多节点部署

文章总览:YuanDaiMa2048博客文章总览 EOS多节点部署 (一)环境设计(二)节点配置(三)区块信息同步(四)启动节点并验证同步EOS单节点的环境如何配置 (一&#xf…...

setImmediate() vs setTimeout() 在 JavaScript 中的区别

setImmediate() vs setTimeout() 在 JavaScript 中的区别 在 JavaScript 中,setImmediate() 和 setTimeout() 都用于调度任务,但它们的工作方式不同。 JavaScript 的异步特性 JavaScript 以其非阻塞、异步行为而闻名,尤其是在 Node.js 环境…...

【Java文件操作】文件系统操作文件内容操作

文件系统操作 常见API 在Java中,File类是用于文件和目录路径名的抽象表示。以下是一些常见的方法: 构造方法: File(String pathname):根据给定的路径创建一个File对象。File(String parent, String child):根据父路径…...

关于若依flowable的安装

有个项目要使用工作流功能,在网上看了flowable的各种资料,最后选择用若依RuoYi-Vue-Flowable这个项目来迁移整合。 一、下载项目代码: 官方项目地址:https://gitee.com/shenzhanwang/Ruoyi-flowable/ 二、新建数据库&#xff…...

猜数字困难版(1-10000)

小游戏&#xff0c;通过提示每次猜高或猜低以及每次猜中的位数&#xff0c;10次内猜中1-10000的一个数。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthde…...

ASPICE术语表

术语来源描述活动Automotive SPICE V4.0由利益相关方或参与方执行的任务用参数Automotive SPICE V4.0应用参数是包含了在系统或软件层级可被更改的数据的软件变量&#xff0c;他们影响系统或软件的行为和属性。应用参数的概念有两种表达方式:规范(分别包括变量名称、值域范围、…...

Knife4j:打造优雅的SpringBoot API文档

1. 为什么需要API文档&#xff1f; 在现代软件开发中,API文档的重要性不言而喻。一份清晰、准确、易于理解的API文档不仅能够提高开发效率,还能降低前后端沟通成本。今天,我们要介绍的Knife4j正是这样一款强大的API文档生成工具,它专为Spring Boot项目量身打造,让API文档的生成…...

数学建模笔记—— 多目标规划

数学建模笔记—— 多目标规划 多目标规划1. 模型原理1.1 多目标规划的一般形式1.2 多目标规划的解1.3 多目标规划的求解 2. 典型例题3. matlab代码实现 多目标规划 多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。又称多目标最优化。通常记为 …...

【鸿蒙HarmonyOS NEXT】页面之间相互传递参数

【鸿蒙HarmonyOS NEXT】页面之间相互传递参数 一、环境说明二、页面之间相互传参 一、环境说明 DevEco Studio 版本&#xff1a; API版本&#xff1a;以12为主 二、页面之间相互传参 说明&#xff1a; 页面间的导航可以通过页面路由router模块来实现。页面路由模块根据页…...

SonicWall SSL VPN曝出高危漏洞,可能导致防火墙崩溃

近日&#xff0c;有黑客利用 SonicWall SonicOS 防火墙设备中的一个关键安全漏洞入侵受害者的网络。 这个不当访问控制漏洞被追踪为 CVE-2024-40766&#xff0c;影响到第 5 代、第 6 代和第 7 代防火墙。SonicWall于8月22日对其进行了修补&#xff0c;并警告称其只影响防火墙的…...

关于SAP标准委外(带料外协)采购订单信息

业务背景&#xff1a; 业务部门提出需要将售料外协方式变更为带料外协&#xff0c;带料外协实际业务存在一个委外订单存在多次发料&#xff0c;且每次发票需要进行齐套发料&#xff0c;不同批次的发料涉及物料替代。在半成品收货时需要进行对发料的组件进行扣料。 需求分析&a…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口&#xff08;interface&#xff09;二、socket.cpp 实现&#xff08;implementation&#xff09;三、server.cpp 使用封装&#xff08;main 函数&#xff09;四、client.cpp 使用封装&#xff08;main 函数&#xff09;五、退出方法…...