当前位置: 首页 > news >正文

为什么矩阵特征值之和等于主对角线元素之和,特征值乘积等于行列式值

首先给出特征值和特征向量的定义。

A是n阶矩阵,如果数λ和n维非零向量x使关系式

Ax=λx                                                                                                                                     (1)

成立,那么数λ称为方阵A的特征值,非零向量x称为A的对应于特征值λ的特征向量。

(1)式也可写成

(A-λE)x=0                                                                                                                            (2)

这是n个方程n个未知数的线性方程组,他有非零解的充要条件是系数行列式

|AE|=0                                                                                                                                    (3)

其左端|AE|是关于λ的n次多项式,记做f(λ),称为方阵A的特征多项式。

f(\lambda )=(\lambda _{1}-\lambda )*(\lambda _{2}-\lambda )*...*(\lambda _{n}-\lambda )=c_{n}\lambda ^{n }+c_{n-1}\lambda ^{n-1 }+...+c_{1}\lambda +c_{0}

证明对角线元素之和为矩阵的迹(特征值之和):​

由特征多项式知,\lambda_{}^{n-1}的系数为(\lambda _{1}+\lambda _{2}+...+\lambda _{n})*(-1)^{n-1}

由行列式知,其n!的项中只有主对角线连乘这一项中包含\lambda_{}^{n-1}\lambda_{}^{n-1}的系数为(a_{11}+a _{22}+...+a_{nn})*(-1)^{n-1},证毕。

证明特征值之积为行列式的值:​

由特征多项式知,\lambda _{1}*\lambda _{2}*...*\lambda _{n}为不含\lambda的常数项。

将行列式中\lambda=0,可得出常数项为|A|,证毕。

相关文章:

为什么矩阵特征值之和等于主对角线元素之和,特征值乘积等于行列式值

首先给出特征值和特征向量的定义。 设A是n阶矩阵,如果数λ和n维非零向量x使关系式 Axλx (1) 成…...

学生学籍管理系统可行性分析报告

引言 一、编写目的 随着科学技术的不断提高,计算机科学日渐成熟,其强大的功能已为人们深刻认识,它已进入人类社会的各个领域并发挥着越来越重要的作用。而学籍管理系统软件,可广泛应用于全日制大、中小学及其他各类学校,系统涵盖了小学、初中、高中学籍…...

C#排序算法新境界:深度剖析与高效实现基数排序

基数排序(Radix Sort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数进行比较。具体来说,基数排序有两种方法: 最低位优先(LSD, Least Significant Digit f…...

玩机搞机-----如何简单的使用ADB指令来卸载和冻结系统应用 无需root权限 详细操作图示教程

同类博文: 玩机搞机---卸载内置软件 无root权限卸载不需要的软件 安全卸载_无需root卸载彻底内置软件-CSDN博客 在很多时候我们需要卸载一些系统级的app。但如果直接手机端进行卸载的话。是无法正常卸载的。其实我们可以通过有些成品工具或者完全靠ADB指令来进行卸…...

如何通过 Apache Camel 将数据导入 Elasticsearch

作者:来自 Elastic Andre Luiz 使用 Apache Camel 将数据提取到 Elasticsearch 的过程将搜索引擎的稳健性与集成框架的灵活性相结合。在本文中,我们将探讨 Apache Camel 如何简化和优化将数据提取到 Elasticsearch。为了说明此功能,我们将实…...

打造民国风格炫酷个人网页:用HTML和CSS3传递民国风韵

附源码!!! 感谢支持 小弟不断创作网站demo感兴趣的可以关注支持一下 对了 俺在结尾带上了自己用的 背景 大家可以尝试换一下效果更好哦~~~ 如何创建一个民国风格的炫酷网页 在这篇博客中,我们将展示如何制作一个结合民国风格和…...

豆包MarsCode编程助手:产品功能解析与应用场景探索!

随着现代技术的不断进化升级,人工智能正在逐步改变着我们的日常工作方式。特别是对于复杂的项目,代码编写、优化、调试、测试等环节充满挑战。为了简化这些环节、提高开发效率,许多智能编程工具应运而生,豆包MarsCode 编程助手就是…...

爬虫全网抓取

爬虫全网抓取是指利用网络爬虫技术,通过自动化的方式遍历互联网上各个网站、论坛、博客等,从这些网页中提取所需的数据。它通常涉及以下几个步骤: 目标设定:确定要抓取哪些类型的网页内容,比如新闻、商品信息、用户评论…...

【计算机组成原理】详细解读带符号整数在计算机中的运算

有符号整数的运算 导读一、补码的优势二、补码的加法运算三、补码的减法运算四、原码、反码、补码的特性结语 导读 大家好,很高兴又和大家见面啦!!! 经过前面的介绍,我们已经初步认识了有符号整数的三种表示形式&…...

vue3常见的bug 修复bug

Vue 3 作为 Vue.js 的最新版本,在性能、开发体验以及代码可维护性等方面带来了显著的提升。然而,就像任何软件框架一样,Vue 3 在使用过程中也可能遇到一些典型的bug或问题。以下是一些可能遇到的典型问题: 响应式系统相关的问题&…...

C++课程笔记 类和对象

类概念 结构体&#xff1a;只要属性 类&#xff1a;有属性也有方法 c可以省略struct c不行 #include<iostream> using namespace std;typedef struct queue1 {int a;queue1 q() {queue1 q(2);return q;};queue1(){}queue1(int qa){a qa;} }q1; int main() {queue1 Q1;…...

提问即创作:用Prompt提示词引领AI灵感爆发

文章目录 &#x1f34a;AI内容创作的精髓&#xff1a;提示词Prompt1 什么是提示词工程?1.1 提示词是如何影响AI的输出结果?1.2 提示词的原理是什么1.3 提示词工程师的前景1.4 谁能成为提示词工程师&#xff1f;1.5 提示词的未来前景 2 提示词的基本书写技巧3 常见的提示词框架…...

一码空传临时网盘PHP源码,支持提取码功能

源码介绍 一码空传临时网盘源码V2.0免费授权&#xff0c;该源码提供了一个简单易用的无数据库版临时网盘解决方案。前端采用了layui开发框架&#xff0c;后端使用原生PHP编写&#xff0c;没有引入任何开发框架&#xff0c;保持了代码的简洁和高效。 这个程序使用了一个无数据…...

自然语言处理实战项目

自然语言处理实战项目 自然语言处理&#xff08;NLP, Natural Language Processing&#xff09;是人工智能的重要分支之一&#xff0c;致力于让计算机理解、生成并与人类进行语言交互。随着深度学习、神经网络和大数据的发展&#xff0c;NLP技术在近年来取得了飞跃性的进展&am…...

人工智能物联网的去中心化和分布式学习:全面综述、新兴挑战和机遇

这篇论文的标题是《Decentralized and Distributed Learning for AIoT: A Comprehensive Review, Emerging Challenges, and Opportunities》&#xff0c;作者是Hanyue Xu, Kah Phooi Seng, Li Minn Ang, 和 Jeremy Smith。论文发表在IEEE Access期刊上&#xff0c;接收日期为2…...

滑动窗口算法—最小覆盖子串

题目 ”最小覆盖子串“问题&#xff0c;难度为Hard&#xff0c;题目如下&#xff1a; 给你两个字符串 S 和 T&#xff0c;请你在 S 中找到包含 T 中全部字母的最短子串。如果 S 中没有这样一个子串&#xff0c;则算法返回空串&#xff0c;如果存在这样一个子串&#xff0c;则可…...

应用案例|开源 PolarDB-X 在互联网安全场景的应用实践

背景介绍 中盾数科集团始创于2012年&#xff0c;是由网络安全服务而发展起来的科技型、多元化的企业集团。旗下包括网络安全服务、信创一体化服务、箱式液冷、区块链、位置服务、视觉服务等六大板块&#xff0c;业务覆盖湖南、甘肃、贵州等多个省份。 业务挑战 中盾集团基于A…...

【大数据】MapReduce的“内存增强版”——Spark

【大数据】MapReduce的“内存增强版”——Spark 文章脉络 Spark架构 Spark-core SparkConf 和 SparkContext RDD Spark集群 Spark-sql 在大数据时代&#xff0c;数据处理和分析成为企业竞争的重要手段。Hadoop作为大数据处理的基石&#xff0c;其核心组件MapReduce在众多…...

o1模型:引领AI技术在STEM领域的突破与应用

o1模型是OpenAI最新推出的大型语言模型&#xff0c;它在多个领域展现出了卓越的能力&#xff0c;被认为是AI技术发展的一个重要里程碑。以下是对o1模型的详细介绍和分析&#xff1a; o1模型的简介和性能评估 o1模型在物理、化学、生物学等领域的基准任务上达到了博士生水平&…...

数据库系统 第57节 数据库迁移

数据库迁移是一个复杂的过程&#xff0c;涉及到将数据从一个数据库系统转移到另一个数据库系统。这个过程通常需要仔细规划和执行&#xff0c;以确保数据的完整性和可用性。以下是数据库迁移的一些关键方面&#xff1a; 数据迁移工具&#xff1a; 这些工具可以帮助自动化迁移过…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下&#xff0c;音视频内容犹如璀璨繁星&#xff0c;点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频&#xff0c;到在线课堂中知识渊博的专家授课&#xff0c;再到影视平台上扣人心弦的高清大片&#xff0c;音…...