无人机视角下落水救援检测数据集
无人机视角下落水救援检测数据集,利用无人机快速搜索落水者对增加受害者的生存机会至关重要,该数据集共收集12万帧视频图像,涵盖无人机高度从10m-60m高度,检测包括落水者(11万标注量)、流木(9000标注量)、救生圈(10000标注量)、冲浪板(2000标注量)、小船(30000标注量)共5类目标,数据量244GB,支持json,voc,yolo格式文件。
数据集介绍:无人机视角下落水救援检测数据集
项目背景:
落水救援是一项紧急且关键的任务,利用无人机进行快速搜索可以显著增加落水者的生存机会。本数据集旨在提供高质量的标注数据,以支持开发高效的落水救援检测系统。
数据集概述:
- 名称:无人机视角下落水救援检测数据集
- 规模:共收集12万帧视频图像
- 无人机高度:从10米到60米
- 目标类别:
- 落水者(11万标注量)
- 流木(9000标注量)
- 救生圈(10000标注量)
- 冲浪板(2000标注量)
- 小船(30000标注量)
- 总数据量:244GB
- 支持格式:JSON、VOC、YOLO
数据集特点:
- 多样性:涵盖多种目标类别,包括落水者、流木、救生圈、冲浪板和小船,有助于提高模型的泛化能力。
- 丰富性:包含大量标注数据,特别是落水者标注量达到了11万,为模型训练提供了充足的样本。
- 高度范围广泛:无人机飞行高度从10米到60米,使得数据集能够在不同高度下进行有效检测。
- 格式灵活:支持多种标注格式(JSON、VOC、YOLO),方便不同工具和框架的使用。
数据集用途:
- 目标检测:可用于训练和评估目标检测模型,特别是在无人机视角下的落水救援场景。
- 应急响应:帮助快速识别落水者的位置,提高救援效率。
- 环境适应性:数据集覆盖了不同高度的图像,有助于模型在不同飞行高度下保持良好的检测性能。
标注详情:
- 落水者:11万标注量,涵盖了不同姿态和环境下的落水者图像。
- 流木:9000标注量,用于区分落水者与其他漂浮物。
- 救生圈:10000标注量,用于识别投放的救生设备。
- 冲浪板:2000标注量,帮助模型排除误检的可能性。
- 小船:30000标注量,用于识别可能的救援工具或障碍物。
使用场景:
- 无人机搜救:在海上或湖泊中使用无人机进行快速搜索落水者。
- 救援协调:为救援队伍提供准确的位置信息,加快救援进程。
- 科研与教学:用于研究无人机在应急响应中的应用,以及相关课程的教学。
技术指标:
- 数据量:244GB,适合大型数据处理平台。
- 标注格式:支持JSON、VOC、YOLO等多种格式,方便导入不同的检测框架。
注意事项:
- 数据隐私:在使用过程中,请确保遵守相关法律法规,保护个人隐私。
- 数据预处理:在使用前,建议进行一定的数据预处理,如图像归一化等。
相关文章:

无人机视角下落水救援检测数据集
无人机视角下落水救援检测数据集,利用无人机快速搜索落水者对增加受害者的生存机会至关重要,该数据集共收集12万帧视频图像,涵盖无人机高度从10m-60m高度,检测包括落水者(11万标注量)、流木(900…...
openssl+keepalived安装部署
文章目录 OpenSSL安装下载地址编译安装修改系统配置版本 Keepalived安装下载地址安装遇到问题安装完成配置文件 keepalived运行检查运行状态查看系统日志修改服务service重新加载systemd检查配置文件语法错误 OpenSSL安装 下载地址 考虑到后面设备可能没法连接到外网&…...
float存储原理
float存储原理基于IEEE 754标准,主要包括符号位、指数位和有效数字位三部分。以下是对其存储原理的具体介绍: 符号位:符号位是浮点数中用于表示正负的位。在单精度浮点数(32位)中,最左边的第1位是符号位&a…...

DAY 9 - 10 : 树
树的概念 定义 树(Tree)是n(n≥0)个节点的有限集合T,它满足两个条件 : 1.有且仅有一个特定的称为根(Root)的节点。 2.其余的节点可以分为m(m≥0)个互不相交的…...

【python计算机视觉编程——9.图像分割】
python计算机视觉编程——9.图像分割 9.图像分割9.1 图割安装Graphviz下一步:正文9.1.1 从图像创建图9.1.2 用户交互式分割 9.2 利用聚类进行分割9.3 变分法 9.图像分割 9.1 图割 可以选择不装Graphviz,因为原本觉得是要用,后面发现好像用不…...

北斗赋能万物互联:新质生产力的强劲驱动力
在数字化转型的大潮中,中国自主研制的北斗卫星导航系统,作为国家重大空间基础设施,正以前所未有的力量推动着万物互联时代的到来,成为新质生产力发展的重要基石。本文将深入剖析北斗系统如何以其独特的技术优势和广泛应用场景&…...

时序预测 | Matlab实现GA-CNN遗传算法优化卷积神经网络时间序列预测
时序预测 | Matlab实现GA-CNN遗传算法优化卷积神经网络时间序列预测 目录 时序预测 | Matlab实现GA-CNN遗传算法优化卷积神经网络时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 时序预测 | Matlab实现GA-CNN遗传算法优化卷积神经网络时间序列预测ÿ…...
如何保证消息不重复消费
在使用消息队列(Message Queue, MQ)时,确保消息不被重复消费是非常重要的,因为重复消费可能导致数据不一致或者业务逻辑出错。要保证消息不被重复消费,可以采取以下几种策略: 1. 消息确认机制 大多数消息…...
HTTP请求工具类
HTTP请求工具类 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.HttpURLConnection; import java.net.URL;public class HttpUtils {/*** 发送GET请求并获取响应结果* * param url 请求的URL* return 响应结果…...

谷歌的 DataGemma 人工智能是一个统计精灵
谷歌正在扩大其人工智能模型家族,同时解决该领域的一些最大问题。 今天,该公司首次发布了 DataGemma,这是一对开源的、经过指令调整的模型,在缓解幻觉挑战方面迈出了一步,幻觉是指大型语言模型(LLM…...

【Python爬虫系列】_021.异步请求aiohttp
课 程 推 荐我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈虚 拟 环 境 搭 建 :👉👉 Python项目虚拟环境(超详细讲解) 👈👈PyQt5 系 列 教 程:👉👉 Python GUI(PyQt5)文章合集 👈👈...

源码运行springboot2.2.9.RELEASE
1 环境要求 java 8 maven 3.5.2 2 下载springboot源码 下载地址 https://github.com/spring-projects/spring-boot/releases/tag/v2.2.9.RELEASE 3 修改配置 修改spring-boot-2.2.9.RELEASE/pom.xml 修改spring-boot-2.2.9.RELEASE/spring-boot-project/spring-boot-tools…...

王者荣耀改重复名(java源码)
王者荣耀改重复名 项目简介 “王者荣耀改重复名”是一个基于 Spring Boot 的应用程序,用于生成王者荣耀游戏中的唯一名称。通过简单的接口和前端页面,用户可以输入旧名称并获得一个新的、不重复的名称。 功能特点 生成新名称:提供一个接口…...

Python 全栈系列271 微服务踩坑记
说明 这个坑花了10个小时才爬出来 碰到一个现象:将微服务改造为并发后,请求最初很快,然后就出现大量的失败,然后过一会又能用。 过去从来没有碰到这个问题,要么是一些比较明显的资源,或者逻辑bug࿰…...

环境搭建2(游戏逆向)
#include<iostream> #include<windows.h> #include<tchar.h> #include<stdio.h> #pragma warning(disable:4996) //exe应用程序 VOID PrintUI(CONST CHAR* ExeName, CONST CHAR* UIName, CONST CHAR* color, SHORT X坐标, SHORT y坐标, WORD UIwide, W…...

快手自研Spark向量化引擎正式发布,性能提升200%
Blaze 是快手自研的基于Rust语言和DataFusion框架开发的Spark向量化执行引擎,旨在通过本机矢量化执行技术来加速Spark SQL的查询处理。Blaze在快手内部上线的数仓生产作业也观测到了平均30%的算力提升,实现了较大的降本增效。本文将深入剖析blaze的技术原…...

用网卡的ap模式抓嵌入式设备的网络包
嵌入式设备不像pc上,有一些专门的工具比如wareshark来抓包,嵌入式设备中,有的可能集成了tcpdump,可以用来进行简单的抓包,但是不方便分析,况且有的嵌入式设备不一定就集成了tcpdump工具。 关于tcpdump工具…...

centos 7 升级Docker 与Docker-Compose 到最新版本
一 升级docker 可参考docker官方升级 1, 查看docker 信息 docker info 2,查看docker 版本 docker --version 3 升级前 可停止docker : sudo systemctl stop docker 4 查看已安装的docker 并卸载 [rootlocalhost docker]# yum list installed | grep docker docker.x86…...
Docker_启动redis,容易一启动就停掉
现象以及排查过程 最近在使用docker来搭建redis服务,但是在启动redis哨兵容器时,总是发现这个容器启动后立马就停止了。首先想到的是不是服务器资源不够用了导致的这个现象,排查后发现不是资源问题。再者猜测是不是启动报错了,查看…...
微服务中间件之Nacos
Nacos(Dynamic Naming and Configuration Service)是阿里巴巴开源的一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台。它提供了服务注册与发现、配置管理以及服务健康监测等核心功能,旨在帮助开发人员更轻松地构建和管理微服…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...