当前位置: 首页 > news >正文

人工智能开发实战matplotlib库应用基础

内容导读

  1. matplotlib简介
  2. 绘制直方图
  3. 绘制撒点图

一、matplotlib简介

matplotlib是一个Python 2D绘图库,它以多种硬拷贝格式和跨平台的交互式环境生成高质量的图形。

matplotlib 尝试使容易的事情变得更容易,使困难的事情变得可能。

我们只需几行代码就可以生成图表、直方图、功率谱、条形图、误差图、散点图等,为大数据的可视化和人工智能的图形化分析提供了大量绘图函数。

二、绘制直方图

Python的第三方库matplotlib提供了丰富的绘图功能,在正式绘图之前,需要在cmd命令窗口中执行如下命令:

pip3 install matplotlib

安装完matplotlib后,就可以在notebook中来使用它强大的绘图功能进行数据的可视化操作。

在数据的可视化过程中,要根据具体的数据可视化分析要求,选用不同的绘图函数来分析数据特征间的关系、查看变量的变化趋势、了解数据的整体分布情况等,去真正读懂数据,为数据深度分析和数据决策提供图形化的信息。

下面,就以绘制直方图为例,来进一步了解此类图形能为我们带来哪些数据解读信息。

案例:用直方图描述2017年到2018年间各季度第一产业的生产总值情况。

1、案例描述

第一产业的生产总值保存在GDP.csv文件中,用matplotlib绘制第一产业生产总值的直方图,并进行对比分析。

2、案例分析

首先利用numpy库将文件数据读入到二维数组中,作为绘图函数的数据源来使用,然后用matplotlib的直方图绘图函数bar()将数组中“第一产业”列的数据以柱状图进行展现。

3、案例实现

# 实现代码import numpy as npimport matplotlib.pyplot as pltplt.rcParams['font.family'] = 'SimHei'# 将全局的字体设置为黑体GDP_data=np.loadtxt("./data/GDP.csv",delimiter=",",skiprows=1)quarter=GDP_data[0:8,0].astype(int)plt.bar(height=GDP_data[0:8,1],x=range(len(GDP_data[0:8,1])),label='第一产业GDP',tick_label=quarter)plt.legend()plt.show()	

代码行3将全局的字体设置为黑体,代码行5将数组值转换成整数,代码行6绘制柱状图,其高度用参数height来指定,即二维数组中第1列的值。

柱状图x坐标用第1产业的数据个数来表示,参数lable是图例标签,参数tick_label是x轴标签。代码行7显示图例,代码行8是显示图形。

程序的运行结果如下图所示:

由上图可以直观看出,在前8个季度中,2018年第4季度的GDP最大,最小值在2017年的第1季度,最大值将近是最小值的3倍多。

另外,每年4个季度的GDP都趋于不断增长的势头,且不同年份对应的各季度的GDP也同样呈现出上升的趋势。

由此可见,通过图形的方式对数据进行可视化,能直观解读数据内隐含的变化趋势,为数据统计和分析提供了一种便捷手段。

三、绘制撒点图

散点图是利用一系列的散点将两个变量的联合分布描绘出来,让我们从图形分布中推断一些信息,如两变量间是否存在某种有意义的关系。

散点图是统计分析中常用的一种手段,特别是在分类统计图形中,它可以算得上是中流砥柱,当数据以恰当的方式在图形中展示出来时,我们就可以非常直观地观察到某些趋势或者模式,也就揭示了变量之间的关系。

1、seaborn是在matplotlib基础上面的封装,方便直接传参数调用

让我们能做出更加吸引人注意的图表,并有助于更好分析数据。

2、使用pip3 install seaborn命令安装完seaborn库后才能使用其绘图功能

用散点图分析鸢尾花的花瓣的宽度和长度之间的相关性。

(1)引例描述

鸢尾花有关花瓣和花蕊的数据保存在iris.csv文件中,我们试图从花瓣的宽度和长度的视角去探索鸢尾花的品种类别是否与花瓣有关。

(2)引例分析

首先利用Pandas库将文件数据读入到数据框中,然后利用seaborn的关系图函数relplot绘制散点图。为便于观察,利用数据框中的种类列Species来区分颜色和散点样式。

(3)引例实现

    # 实现代码如下所示。import pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsiris=pd.read_csv("./data/iris.csv")sns.set(style="whitegrid",font="simhei",font_scale=0.9)sns.relplot(x="Petal.Length", y="Petal.Width", hue="Species", palette=["r","b","g"],style="Species", data=iris);plt.show()

代码中的pandas库是人工智能学习中处理数据的高效工具,pandas 是基于NumPy来创建的,它纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。

以上代码中,relplot函数的参数hue和style分别表示使用不同的颜色和样式区分Species维的数据,以便观察不同品种鸢尾花在花瓣维度的分布情况。

更多内容请持续关注本站!

相关文章:

人工智能开发实战matplotlib库应用基础

内容导读 matplotlib简介绘制直方图绘制撒点图 一、matplotlib简介 matplotlib是一个Python 2D绘图库,它以多种硬拷贝格式和跨平台的交互式环境生成高质量的图形。 matplotlib 尝试使容易的事情变得更容易,使困难的事情变得可能。 我们只需几行代码…...

Android 源码集成可卸载 APP

android系统包含三类APP: 1、可自由卸载APP安装在 /data/app目录下。 2、系统APP放在 /system/app目录。 3、特权APP放在 /system/priv-app目录。 系统编译后,打包前, /data分区不起作用,因此系统打包前,可以先将APP全部拷贝到 /…...

cJSON-轻量级解析模块、字符串的神——编织STM32C8T6与阿里云信息传递的纽带

编写方向:本人就不泛泛的编写一篇什么一文学会cJSON了,没什么突出点,也就我水水字数,你们看来看去也不懂,本人是从上阿里云传信息接触的cJSON的,我就此写一篇针对性的文章,希望对大家有用&#…...

【Git】Clone

当git clone失败时,出现 RPC failed; curl 92 HTTP/2 stream 0 was not closed cleanly: CANCEL (err 8) 错误,可能由于网络连接不稳定或仓库太大导致的。 可以尝试以下几种方法来解决这个问题: 增加 Git 的缓冲区大小: git confi…...

web开发 之 HTML、CSS、JavaScript、以及JavaScript的高级框架Vue(学习版2)

一、前言 接下来就是来解决这些问题 二、 Ajax 1.ajax javscript是网页三剑客之一&#xff0c;空用来控制网页的行为的 xml是一种标记语言&#xff0c;是用来存储数据的 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-…...

【课程学习】信号检测与估计II

b站 文章目录 1-概述 1-概述 线性、正交、平稳、高斯 研究线性模型&#xff0c;采用正交化方法&#xff0c;假设信号平稳&#xff0c;考虑信号的统计特性是高斯的。 本学期考虑&#xff0c;非线性、非正交、非平稳、非高斯。 阵列处理 1980-1990 MUSIC 稀疏性 2006-2012 LASS 时…...

【深度学习|PyTorch】基于 PyTorch 搭建 U-Net 深度学习语义分割模型——附代码及其解释!

【深度学习|PyTorch】基于 PyTorch 搭建 U-Net 深度学习语义分割模型——附代码及其解释&#xff01; 【深度学习|PyTorch】基于 PyTorch 搭建 U-Net 深度学习语义分割模型——附代码及其解释&#xff01; 论文地址&#xff1a; https://arxiv.org/abs/1505.04597 代码地址&a…...

DPDK基础入门(十):虚拟化

I/O虚拟化 全虚拟化&#xff1a;宿主机截获客户机对I/O设备的访问请求&#xff0c;然后通过软件模拟真实的硬件。这种方式对客户机而言非常透明&#xff0c;无需考虑底层硬件的情况&#xff0c;不需要修改操作系统。 半虚拟化&#xff1a;通过前端驱动/后端驱动模拟实现I/O虚拟…...

OpenCV_图像旋转超详细讲解

图像转置 transpose(src, dst); transpose()可以实现像素下标的x和y轴坐标进行对调&#xff1a;dst(i,j)src(j,i)&#xff0c;接口形式 transpose(InputArray src, // 输入图像OutputArray dst, // 输出 ) 图像翻转 flip(src, dst, 1); flip()函数可以实现对图像的水平翻转…...

关于 OceanBase 4.x 中被truncate的 table 不再支持进回收站的原因

近期&#xff0c;OceanBase的问答社区中收到了不少用户的询问&#xff0c;关于OceanBase 3.x版本支持被truncate的table进入回收站的功能&#xff0c;为何在升级到4.x版本后不再支持了&#xff1f;为了解答大家的疑惑&#xff0c;我们将通过这篇文章来浅析 OceanBase在4.x版本中…...

Numpy索引详解(数值索引,列表索引,布尔索引)

数值索引 数值索引类似列表索引操作使用[]&#xff0c;参数为下标&#xff0c;[0,len-1),高维数组的索引使用多个[]连用分别代表一维索引&#xff0c;二维索引... import numpy as np import torchnp.random.seed(1) data1 np.arange(5) data2 np.arange(15).reshape(3,5) …...

大数据新视界 --大数据大厂之MongoDB与大数据:灵活文档数据库的应用场景

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

三年 Sparker 都不一定知道的算子内幕

一、如何在 mapPartitions 中释放资源 mapPartitions是一种对每个分区进行操作的转换操作&#xff0c;于常用的map操作类似&#xff0c;但它处理的是整个分区而不是单个元素。mapPartitions的应用场景适合处理需要在每个分区内批量处理数据的场景&#xff0c;通常用于优化性能…...

PG表空间

目录标题 PG表空间PostgreSQL表空间的最佳实践是什么&#xff1f;如何在PostgreSQL中创建和管理自定义表空间&#xff1f;PostgreSQL表空间对数据库性能的具体影响有哪些&#xff1f;在PostgreSQL中&#xff0c;如何迁移数据到不同的表空间以优化存储布局&#xff1f;PostgreSQ…...

谷粒商城のElasticsearch

文章目录 前言一、前置知识1、Elasticsearch 的结构2、倒排索引 (Inverted Index)2.1、 索引阶段2.2、查询阶段 二、环境准备1、安装Es2、安装Kibana3、安装 ik 分词器 三、项目整合1、引入依赖2、整合业务2.1、创建索引、文档、构建查询语句2.2、整合业务代码 后记 前言 本篇介…...

排队免单模式小程序开发

开发一个排队免单模式的小程序涉及多个方面&#xff0c;包括需求分析、界面设计、后端开发、数据库设计以及测试上线等。下面我将详细介绍每个步骤的概要&#xff1a; 1.需求分析 明确目标&#xff1a;首先确定小程序的核心功能&#xff0c;即排队免单模式的具体实现方式。例如…...

从OracleCloudWorld和财报看Oracle的转变

2024年9月9-12日Oracle Cloud World在美国拉斯维加斯盛大开幕 押注AI和云 Oracle 创始人Larry Ellison做了对Oracle战略和未来愿景的主旨演讲&#xff0c;在演讲中Larry将AI技术和云战略推到了前所未有的高度&#xff0c;从新的Oracle 23c改名到Oracle23ai&#xff0c;到Oracl…...

搭建 PHP

快速搭建 PHP 环境指南 PHP 是一种广泛用于 Web 开发的后端脚本语言&#xff0c;因其灵活性和易用性而受到开发者的青睐。无论是开发个人项目还是企业级应用&#xff0c;PHP 环境的搭建都是一个不可忽视的基础步骤。本指南将带您快速学习如何在不同平台上搭建 PHP 环境&#x…...

kubernetes技术详解,带你深入了解k8s

目录 一、Kubernetes简介 1.1 容器编排应用 1.2 Kubernetes简介 1.3 k8s的设计架构 1.3.1 k8s各个组件的用途 1.3.2 k8s各组件之间的调用关系 1.3.3 k8s的常用名词概念 1.3.4 k8s的分层结构 二、k8s集群环境搭建 2.1 k8s中容器的管理方式 2.2 k8s环境部署 2.2.1 禁用…...

Gateway学习笔记

目录 介绍&#xff1a; 核心概念 依赖 路由 断言 基本的断言工厂 自定义断言 过滤器 路由过滤器 过滤器工厂 自定义路由过滤器 全局过滤器 其他 过滤器执行顺序 前置后置&#xff08;&#xff1f;&#xff09; 跨域问题 yaml 解决 配置类解决 介绍&#x…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...