【Paper Reading】结合 NanoFlow 研究,优化大语言模型服务效率的探索
作者 王伟 PAI引擎团队
近年来,人工智能领域的快速发展推动了大型语言模型的广泛应用,随之而来的是对其服务效率的迫切需求。论文《NanoFlow:Towards Optimal Large Language Model Serving Throughput》提出了一种突破性的新型服务框架,旨在提高大语言模型在实际应用中的服务吞吐量。这一研究不仅为优化计算资源的利用提供了新思路,也为我们团队在实际应用中面对的挑战提供了宝贵的借鉴。
阿里云 PAI 团队开发了 BladeLLM,旨在为用户提供高性能、高稳定、企业级的大模型推理能力。在日常工作中,我们经常需要处理大量的实时请求,确保用户体验的同时,降低系统的计算成本。正因如此,NanoFlow 中提出的一系列优化策略与我们目前的研究方向紧密相关,为我们探索更高效的模型服务方案提供了启示。
本文将深入探讨 NanoFlow 的关键思路和核心技术,分析 NanoFlow 与 阿里云人工智能平台 PAI 在实际工作中应用的潜力。
NanoFlow简介
在 CPU 中, 当我们只调度一个执行流给 CPU 时, 如果 CPU 在执行某些指令时遇到了阻塞, 比如在执行 IO 指令时, 此时整个 CPU 将处于闲置状态, 其会等待 IO 指令执行完成才开始处理下一条指令,造成了浪费。为此 CPU 引入了超线程技术, 允许应用将两个执行流调度到一个 CPU 上, 这样当 CPU 执行一条执行流阻塞时会切换执行下一个执行流。 与此同时乱序执行, 多流水线等各种技术都引入进来, 使得即使只调度了一个执行流给 CPU, CPU 也会想尽办法在执行指令 x 阻塞时调度其他不依赖 x 的指令执行。GPU 也面临着同样的问题, SM 在硬件层面调度多个 warp 并发执行,而 NanoFlow 就是尝试在软件层面解决这些问题。
在 NanoFlow 之前,业界通过数据、张量和流水线等设备间并行方法来提升吞吐量,但这些方法均未能充分利用到单个设备内的资源。NanoFlow 提出了一个新型服务框架,利用设备内部的并行性,通过 NanoBatch 将请求分解,打破了推理中的顺序依赖,实现资源重叠使用。其主要技术创新包括基于操作的流水线和调度,将设备功能单元进行分区,实现不同操作的同时执行。评估结果显示,NanoFlow 在实验环境下,相较于最先进的服务系统提供了1.91倍的吞吐量提升,实现了59%至72%的最优吞吐量,具有良好的跨模型移植性。
具体技术实现
GPU实现
NanoFlow 对于传统推理框架仅调度一条执行流到 GPU 导致单个 GPU 内资源未能充分利用的解决思路也很直观, 就像 CPU 超线程一样, 我们一次调度多个执行流给 GPU, 多个执行流中 operation 互相之间没有依赖关系, 可以最大程度地实现资源重叠使用。 当然也不能无脑调度多个执行流, 就像 CPU 超线程中经常会遇到由于资源争抢, 导致调度到同一 CPU 的两个执行流执行速度都会变慢。
为此 NanoFlow 针对 LLM 为单个 GPU 精心设计了一条执行流:

图中表示 tensor parallel group 第
个分片, 如上执行流最理想执行情况如下所示, 此时资源重叠使用达到了最佳。

在完成如上流水线设计之后, 接下来一个问题就是对于一个给定的模型, 如何确定流水线中每个操作输入 NanoBatch 的大小, 以及每个操作占用多少资源。 毕竟稍有不慎, 就会像 CPU 超线程那样造成了资源争抢两败俱伤。 NanoFlow 这里解法是结合 offline profiling 以及贪心搜索来为每一个特定模型确定最优参数组合。
CPU 实现
即使是在 CPU 任务处理上, NanoFlow 也会尽最大努力不让 GPU 处于空闲状态。 这主要体现在:
-
async scheduler, NanoFlow 会在 iteration 在 GPU 执行期间, 在 CPU 上运行调度逻辑确认组装下一个 iteration 的 batch, 以及分配对应的 kvcache 空间等准备工作。 在 iteration 结束之后, NanoFlow 会根据这里组装好的 batch 立即发起下一个 iteration。 在下一个 iteration 在 GPU 执行期间, NanoFlow 才会检测上一个 iteration 已经结束的请求。
-
async kvcache offload,NanoFlow 支持 prompt cache, 会在请求结束时将请求 kvcache 卸载保存到 SSD 上, 并采用 LRU 策略管理。 考虑到将 kvcache offload ssd 对于 GPU 来说是个 memory bound 操作, NanoFlow 会在下一次迭代 UGD 期间调度 offload 任务, 来尽可能 overlap。 为了提升 offload 吞吐, 在 offload 时, NanoFlow 会先将分布在各地的 kvcache page 聚合到一段连续空间中, 之后将这段连续空间中的内容卸载到 SSD, 在从 SSD 中加载 kvcache 到 GPU 中时也具有类似的过程。
NanoFlow 与 PAI 的结合
在《TAG:BladeLLM 的纯异步推理架构》中,我们介绍了 BladeLLM 的纯异步推理架构——TAG(Totally Asynchronous Generator)。TAG 架构下的各个模块全异步执行、互不阻塞,但模型前向过程仍然是一个不可分割的原子过程。NanoFlow 在 GPU 设备内部引入多级流水,则打开了更多的异步执行空间。后续,我们将进一步复现和评估NanoFlow的工作,结合 TAG 和 NanoFlow,探索全异步架构下的优化空间。
招聘
阿里云人工智能平台 PAI 长期开放推理优化方向的研究型实习生、校招和社招岗位。团队致力于从模型和系统两方面对大语言模型推理进行协同优化,工作内容覆盖模型压缩、高性能算子、推理框架和运行时、分布式等工作。欢迎投递简历:xiafei.qiuxf@alibaba-inc.com
相关文章:
【Paper Reading】结合 NanoFlow 研究,优化大语言模型服务效率的探索
作者 王伟 PAI引擎团队 近年来,人工智能领域的快速发展推动了大型语言模型的广泛应用,随之而来的是对其服务效率的迫切需求。论文《NanoFlow:Towards Optimal Large Language Model Serving Throughput》提出了一种突破性的新型服务框架&…...
达芬奇竖屏导出有黑屏解决方案
文章目录 项目设置导出设置 初学达芬奇,导出的时候,总是有黑边。 经过研究,才发现导出的时候的分辨率和项目分辨率 2个地方都要设置,否则导出就会导致有黑边。 项目设置 点击 文件 选择项目设置 选择竖屏分辨率 导出设置...
Elasticsearch Java API 针对 Geohash7 网点进行分桶聚合
需求整理: geohash 7网格存储工作热度和学习热度数值,支持随机区域多个范围的热度聚合; 创建索引结构 索引文档需要包含 Geohash 网格、工作热度和学习热度等字段。可以在 Elasticsearch 中定义一个索引,确保 location 字段的类…...
Transformer学习(1):注意力机制
文章目录 什么是注意力如何实现注意注意力的计算过程总结 什么是注意力 在一张图像中,包含了各种信息,而我们会自动关注重要的信息。下图是注意力热力图,可以发现人们会注意兔子的脸这些重要信息。 而在深度学习中,输入数据包含…...
spring模块(六)spring event事件(3)广播与异步问题
发布事件和监听器之间默认是同步的;监听器则是广播形式。demo: event: package com.listener.demo.event;import com.listener.demo.dto.UserLogDTO; import org.springframework.context.ApplicationEvent;public class MyLogEvent extends…...
【Elasticsearch系列八】高阶使用
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
【H2O2|全栈】关于CSS(4)CSS基础(四)
目录 CSS基础知识 前言 准备工作 精灵图 概念 属性 案例 浮动 基础属性 清除浮动 案例 预告和回顾 后话 CSS基础知识 前言 本系列博客将分享层叠样式表(CSS)有关的知识点。 接下来的几期内容相对比较少,主要是对前面的内容进…...
node.js+Koa框架+MySQL实现注册登录
完整视频展示:https://item.taobao.com/item.htm?ftt&id831092436619&spma21dvs.23580594.0.0.52de2c1bg9gTfM 效果展示: 一、项目介绍 本项目是基于node.jsKoamysql的注册登录的项目,主要是给才学习node.js和Koa框架的萌新才写的。 二、项目…...
矢量化操作
约定 本文中的”向量”均指一维数组/张量,”矩阵”均值二维数组/张量 前言 在ML当中,向量和矩阵非常常见。由于之前使用C语言的惯性,本人经常会从标量的角度考虑向量和矩阵的运算,也就是用for循环来完成向量或矩阵的运算。实际上,for循环的风格比python内置的操作或pytor…...
【LeetCode】每日一题 2024_9_16 公交站间的距离(模拟)
前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动! 题目:公交站间的距离 代码与解题思路 func distanceBetweenBusStops(distance []int, start int, destination int) int {// 首先让 start > destination, 这两个谁大对结果没有影响&#…...
【Python笔记】PyCharm大模型项目环境配置
一、PyCharm创建新项目 二、更新pip版本 ...>python.exe -m pip install --upgrade pip 三、生成所需requirements配置文件 ...>pip freeze > requirements.txt 四、安装所需组件requirements.txt ...>pip install -r requirements.txt...
FPGA-Vivado-IP核-虚拟输入输出(VIO)
VIO IP核 背景介绍 Vivado中的VIO(Virtual Input/Output,虚拟输入/输出) IP核是一种用于调试和测试FPGA设计的IP核。当设计者通过JTAG接口与FPGA芯片连接时,在Vivado的Verilog代码中添加VIO IP核,就可以让设计者与FPG…...
使用knn算法对iris数据集进行分类
程序功能 使用 scikit-learn 库中的鸢尾花数据集(Iris dataset),并基于 KNN(K-Nearest Neighbors,K近邻)算法进行分类,最后评估模型的准确率。 代码 from sklearn import datasets# 加载鸢尾…...
GEE Shapefile 格式转换 GeoJSON
在地理信息系统(GIS)领域,数据格式之间的转换是一项常见的需求。例如,将 Shapefile 格式转换为 GeoJSON 格式,对于上传数据到 Google Earth Engine (GEE) 尤其有用。本文将通过一个 Python 脚本的示例,实现…...
从kaggle竞赛零基础上手CV实战(Deepfake检测)
关注B站可以观看更多实战教学视频:hallo128的个人空间 从kaggle竞赛零基础上手CV实战 从kaggle竞赛零基础上手CV实战(Deepfake检测) 目录 从kaggle竞赛零基础上手CV实战(Deepfake检测)背景介绍学习地址课程大纲课程特色…...
Linux cat命令详解使用:高效文本内容管理
cat是 Linux 中最常用的命令之一,主要用于查看文件内容、合并文件以及重定向输出。它可以一次性显示文件内容,也可以将多个文件的内容串联显示出来。 基本语法 cat [选项] [文件...]常用参数选项 -n:为输出的每一行添加行号。-b࿱…...
YOLOv9改进系列,YOLOv9颈部网络SPPELAN替换为FocalModulation
摘要 焦点调制网络(简称FocalNets),其中自注意力(SA)完全由焦点调制模块取代,用于在视觉中建模标记交互。焦点调制包括三个组件:(i)焦点情境化,通过一堆深度卷积层实现,从短到长范围编码视觉上下文,(ii)门控聚合,选择性地将上下文聚集到每个查询标记的调制器中…...
圆环加载效果
效果预览 代码实现 from PyQt5.QtCore import QSize, pyqtProperty, QTimer, Qt, QThread, pyqtSignal from PyQt5.QtGui import QColor, QPainter from PyQt5.QtWidgets import QApplication, QWidget, QHBoxLayout, QPushButton, QVBoxLayout, QLabel, QGridLayoutclass Cir…...
leetcode - 分治思想
分治 - 快排 这里快排我们统一使用 数组分三块 和 随机产生基准值的方法实现排序 数组分三块: . - 力扣(LeetCode) 整个思想即将数组按照基准值分为三个区间 , 具体实现: 三指针实现. 遍历指针 , 左区间右边界指针 , 右区间左边界指针 class Solutio…...
Java面试题·解释题·单例模式、工厂模式、代理模式部分
系列文章目录 Java面试题解释题JavaSE部分 Java面试题解释题框架部分 Java面试题解释题单例模式、工厂模式、代理模式部分 文章目录 系列文章目录前言一、设计模式1. 单例模式1.1 单例模式的定义1.2 单例模式的实现方法 2. 工厂模式2.1 工厂模式的定义2.2 工厂模式的实现方法2…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...
【向量库】Weaviate 搜索与索引技术:从基础概念到性能优化
文章目录 零、概述一、搜索技术分类1. 向量搜索:捕捉语义的智能检索2. 关键字搜索:精确匹配的传统方案3. 混合搜索:语义与精确的双重保障 二、向量检索技术分类1. HNSW索引:大规模数据的高效引擎2. Flat索引:小规模数据…...
