当前位置: 首页 > news >正文

【C++前后缀分解 动态规划】2100. 适合野炊的日子|1702

本文涉及知道点

C++前后缀分解
C++动态规划

LeetCode2100. 适合野炊的日子

你和朋友们准备去野炊。给你一个下标从 0 开始的整数数组 security ,其中 security[i] 是第 i 天的建议出行指数。日子从 0 开始编号。同时给你一个整数 time 。
如果第 i 天满足以下所有条件,我们称它为一个适合野炊的日子:
第 i 天前和后都分别至少有 time 天。
第 i 天前连续 time 天建议出行指数都是非递增的。
第 i 天后连续 time 天建议出行指数都是非递减的。
更正式的,第 i 天是一个适合野炊的日子当且仅当:security[i - time] >= security[i - time + 1] >= … >= security[i] <= … <= security[i + time - 1] <= security[i + time].
请你返回一个数组,包含 所有 适合野炊的日子(下标从 0 开始)。返回的日子可以 任意 顺序排列。
示例 1:
输入:security = [5,3,3,3,5,6,2], time = 2
输出:[2,3]
解释:
第 2 天,我们有 security[0] >= security[1] >= security[2] <= security[3] <= security[4] 。
第 3 天,我们有 security[1] >= security[2] >= security[3] <= security[4] <= security[5] 。
没有其他日子符合这个条件,所以日子 2 和 3 是适合野炊的日子。
示例 2:
输入:security = [1,1,1,1,1], time = 0
输出:[0,1,2,3,4]
解释:
因为 time 等于 0 ,所以每一天都是适合野炊的日子,所以返回每一天。
示例 3:
输入:security = [1,2,3,4,5,6], time = 2
输出:[]
解释:
没有任何一天的前 2 天建议出行指数是非递增的。
所以没有适合野炊的日子,返回空数组。
提示:
1 <= security.length <= 105
0 <= security[i], time <= 105

前后缀分解

n = security.length
left[i] 记录 以nums[i]结尾的最长非递增子数组的长度。
如果left[i] <= left[i-1]则left[i] = left[i-1]+1;否则left[i] =1 。
right[i]记录 以nums[i]开始的最长非递减子数组的长度。
如果left[i]和right[i]大于time,则是好日子。
right[n-1-i] 就是nums的转置数组的left[i]

代码

打开打包代码的方法兼述单元测试

核心代码

class Solution {public:vector<int> goodDaysToRobBank(vector<int>& security, int time) {m_iN = security.size();auto Do = [&](const vector<int>& security) {vector<int> ret(m_iN, 1);for (int i = 1; i < m_iN; i++) {if (security[i] <= security[i - 1]) {ret[i] = ret[i - 1] + 1;}}return ret;};auto left = Do(security);auto right = Do(vector<int>(security.rbegin(), security.rend()));vector<int> ret;for (int i = 0; i < m_iN; i++) {if ((left[i] > time) && (right[m_iN - 1 - i] > time)) {ret.emplace_back(i);}}return ret;}int m_iN;};

单元测试

	vector<int> security;int time;TEST_METHOD(TestMethod11){security = { 5, 3, 3, 3, 5, 6, 2 }, time = 2;auto res = Solution().goodDaysToRobBank(security, time);AssertEx({ 2,3 }, res);}TEST_METHOD(TestMethod12){security = { 1,1,1,1,1 }, time = 0;auto res = Solution().goodDaysToRobBank(security, time);AssertEx({ 0,1,2,3,4 }, res);}TEST_METHOD(TestMethod13){security = { 1,2,3,4,5,6 }, time = 2;auto res = Solution().goodDaysToRobBank(security, time);AssertEx({  }, res);}

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

相关文章:

【C++前后缀分解 动态规划】2100. 适合野炊的日子|1702

本文涉及知道点 C前后缀分解 C动态规划 LeetCode2100. 适合野炊的日子 你和朋友们准备去野炊。给你一个下标从 0 开始的整数数组 security &#xff0c;其中 security[i] 是第 i 天的建议出行指数。日子从 0 开始编号。同时给你一个整数 time 。 如果第 i 天满足以下所有条件…...

HarmonyOS 速记

目录 装饰器Entry(入口)Component(组件)State(状态)Preview(预览)PreviewerInspector 结构体structbuild自定义组件自定义 Custom 组件 容器Row(行) & Column(列)RelativeContainer(相对布局容器)marginpaddingGrid(网格容器)List(列表) 组件Image(图片)图片的填充模式 Tex…...

使用 Milvus、vLLM 和 Llama 3.1 搭建 RAG 应用

vLLM 是一个简单易用的 LLM 推理服务库。加州大学伯克利分校于 2024 年 7 月将 vLLM 作为孵化项目正式捐赠给 LF AI & Data Foundation 基金会。欢迎 vLLM 加入 LF AI & Data 大家庭&#xff01;&#x1f389; 在主流的 AI 应用架构中&#xff0c;大语言模型&#xff0…...

【springboot】父子工程项目搭建

父工程创建 1.新建一个spring项目 2.选择合适的springboot版本&#xff0c;点击【完成】&#xff0c;即创建父工程完毕 3.删除父工程中无用文件&#xff1a;src 创建子工程模块 1.右键项目名->新建&#xff08;news&#xff09;->模块&#xff08;Module&#xff09;…...

【Paper Reading】结合 NanoFlow 研究,优化大语言模型服务效率的探索

作者 王伟 PAI引擎团队 近年来&#xff0c;人工智能领域的快速发展推动了大型语言模型的广泛应用&#xff0c;随之而来的是对其服务效率的迫切需求。论文《NanoFlow&#xff1a;Towards Optimal Large Language Model Serving Throughput》提出了一种突破性的新型服务框架&…...

达芬奇竖屏导出有黑屏解决方案

文章目录 项目设置导出设置 初学达芬奇&#xff0c;导出的时候&#xff0c;总是有黑边。 经过研究&#xff0c;才发现导出的时候的分辨率和项目分辨率 2个地方都要设置&#xff0c;否则导出就会导致有黑边。 项目设置 点击 文件 选择项目设置 选择竖屏分辨率 导出设置...

Elasticsearch Java API 针对 Geohash7 网点进行分桶聚合

需求整理&#xff1a; geohash 7网格存储工作热度和学习热度数值&#xff0c;支持随机区域多个范围的热度聚合&#xff1b; 创建索引结构 索引文档需要包含 Geohash 网格、工作热度和学习热度等字段。可以在 Elasticsearch 中定义一个索引&#xff0c;确保 location 字段的类…...

Transformer学习(1):注意力机制

文章目录 什么是注意力如何实现注意注意力的计算过程总结 什么是注意力 在一张图像中&#xff0c;包含了各种信息&#xff0c;而我们会自动关注重要的信息。下图是注意力热力图&#xff0c;可以发现人们会注意兔子的脸这些重要信息。 而在深度学习中&#xff0c;输入数据包含…...

spring模块(六)spring event事件(3)广播与异步问题

发布事件和监听器之间默认是同步的&#xff1b;监听器则是广播形式。demo&#xff1a; event&#xff1a; package com.listener.demo.event;import com.listener.demo.dto.UserLogDTO; import org.springframework.context.ApplicationEvent;public class MyLogEvent extends…...

【Elasticsearch系列八】高阶使用

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

【H2O2|全栈】关于CSS(4)CSS基础(四)

目录 CSS基础知识 前言 准备工作 精灵图 概念 属性 案例 浮动 基础属性 清除浮动 案例 预告和回顾 后话 CSS基础知识 前言 本系列博客将分享层叠样式表&#xff08;CSS&#xff09;有关的知识点。 接下来的几期内容相对比较少&#xff0c;主要是对前面的内容进…...

node.js+Koa框架+MySQL实现注册登录

完整视频展示&#xff1a;https://item.taobao.com/item.htm?ftt&id831092436619&spma21dvs.23580594.0.0.52de2c1bg9gTfM 效果展示&#xff1a; 一、项目介绍 本项目是基于node.jsKoamysql的注册登录的项目,主要是给才学习node.js和Koa框架的萌新才写的。 二、项目…...

矢量化操作

约定 本文中的”向量”均指一维数组/张量,”矩阵”均值二维数组/张量 前言 在ML当中,向量和矩阵非常常见。由于之前使用C语言的惯性,本人经常会从标量的角度考虑向量和矩阵的运算,也就是用for循环来完成向量或矩阵的运算。实际上,for循环的风格比python内置的操作或pytor…...

【LeetCode】每日一题 2024_9_16 公交站间的距离(模拟)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动&#xff01; 题目&#xff1a;公交站间的距离 代码与解题思路 func distanceBetweenBusStops(distance []int, start int, destination int) int {// 首先让 start > destination, 这两个谁大对结果没有影响&#…...

【Python笔记】PyCharm大模型项目环境配置

一、PyCharm创建新项目 二、更新pip版本 ...>python.exe -m pip install --upgrade pip 三、生成所需requirements配置文件 ...>pip freeze > requirements.txt 四、安装所需组件requirements.txt ...>pip install -r requirements.txt...

FPGA-Vivado-IP核-虚拟输入输出(VIO)

VIO IP核 背景介绍 Vivado中的VIO&#xff08;Virtual Input/Output&#xff0c;虚拟输入/输出&#xff09; IP核是一种用于调试和测试FPGA设计的IP核。当设计者通过JTAG接口与FPGA芯片连接时&#xff0c;在Vivado的Verilog代码中添加VIO IP核&#xff0c;就可以让设计者与FPG…...

使用knn算法对iris数据集进行分类

程序功能 使用 scikit-learn 库中的鸢尾花数据集&#xff08;Iris dataset&#xff09;&#xff0c;并基于 KNN&#xff08;K-Nearest Neighbors&#xff0c;K近邻&#xff09;算法进行分类&#xff0c;最后评估模型的准确率。 代码 from sklearn import datasets# 加载鸢尾…...

GEE Shapefile 格式转换 GeoJSON

在地理信息系统&#xff08;GIS&#xff09;领域&#xff0c;数据格式之间的转换是一项常见的需求。例如&#xff0c;将 Shapefile 格式转换为 GeoJSON 格式&#xff0c;对于上传数据到 Google Earth Engine (GEE) 尤其有用。本文将通过一个 Python 脚本的示例&#xff0c;实现…...

从kaggle竞赛零基础上手CV实战(Deepfake检测)

关注B站可以观看更多实战教学视频&#xff1a;hallo128的个人空间 从kaggle竞赛零基础上手CV实战 从kaggle竞赛零基础上手CV实战&#xff08;Deepfake检测&#xff09; 目录 从kaggle竞赛零基础上手CV实战&#xff08;Deepfake检测&#xff09;背景介绍学习地址课程大纲课程特色…...

Linux cat命令详解使用:高效文本内容管理

cat是 Linux 中最常用的命令之一&#xff0c;主要用于查看文件内容、合并文件以及重定向输出。它可以一次性显示文件内容&#xff0c;也可以将多个文件的内容串联显示出来。 基本语法 cat [选项] [文件...]常用参数选项 -n&#xff1a;为输出的每一行添加行号。-b&#xff1…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...