当前位置: 首页 > news >正文

Python和MATLAB及C++信噪比导图(算法模型)

🎯要点

  1. 视频图像修复
  2. 模数转换中混合信号链噪音测量
  3. 频谱计算和量化周期性视觉刺激脑电图
  4. 高斯噪声的矩形脉冲 总谐波失真 周期图功率谱密度
  5. 各种心率失常检测算法
  6. 胶体悬浮液跟踪检测计算
  7. 交通监控摄像头图像噪音计算
    在这里插入图片描述

Python信噪比

信噪比是科学和工程中使用的一种测量方法,用于比较所需信号水平与背景噪声水平。信噪比定义为信号功率与噪声功率之比,通常以分贝表示。高于 1:1(大于 0 dB)的比率表示信号大于噪声。

信噪比是影响处理或传输信号的系统(例如通信系统、音频系统、雷达系统、成像系统和数据采集系统)的性能和质量的重要参数。高信噪比意味着信号清晰且易于检测或解释,而低信噪比意味着信号被噪声破坏或遮蔽,可能难以区分或恢复。可以通过各种方法来提高信噪比,例如增加信号强度、降低噪声水平、滤除不需要的噪声或使用纠错技术。

信噪比的一种定义是信号(有意义的输入)的功率与背景噪声(无意义或不需要的输入)的功率之比:
S N R = P 信号  P 噪声  SNR =\frac{P_{\text {信号 }}}{P_{\text {噪声 }}} SNR=P噪声 P信号 
其中 P P P 是平均功率。信号功率和噪声功率必须在系统中相同或等效的点以及相同的系统带宽内进行测量。

随机变量 ( S ) (S) (S) 与随机噪声 N N N 的信噪比为:
S N R = E [ S 2 ] E [ N 2 ] SNR =\frac{ E \left[S^2\right]}{ E \left[N^2\right]} SNR=E[N2]E[S2]
其中 E 指的是期望值,在本例中是 N N N 的均方。

如果信号只是 s s s 的常数值,则该方程简化为
S N R = s 2 E [ N 2 ] SNR =\frac{s^2}{ E \left[N^2\right]} SNR=E[N2]s2
如果噪声的预期值为零(通常如此),则分母是其方差,即其标准差的平方 σ N \sigma_{ N } σN

信号和噪声必须以相同的方式测量,例如相同阻抗上的电压。它们的均方根也可以根据以下公式使用:
S N R = P 信号  P 噪声  = ( A 信号  A 噪声  ) 2 SNR =\frac{P_{\text {信号 }}}{P_{\text {噪声 }}}=\left(\frac{A_{\text {信号 }}}{A_{\text {噪声 }}}\right)^2 SNR=P噪声 P信号 =(A噪声 A信号 )2
其中 A A A 是均方根 (RMS) 幅度(例如,RMS 电压)。

Python量化噪声

一种情景,估算信号本身的功率,从而估算出信号与噪声功率之间的比率(假设噪声功率保持不变)。
S N R d b = 10 ⋅ log ⁡ 10 P s − P n P n S N R_{d b}=10 \cdot \log _{10} \frac{P_s-P_n}{P_n} SNRdb=10log10PnPsPn
另一种情景,使系统尽可能干净(例如,在单位增益下绕过或类似装置!),测量输入信号功率和输出信号功率,并假设它们之间的差异就是所添加的噪声水平:
P n = P o − P i P_n=P_o-P_i Pn=PoPi
其余换算与第一种情景相同。

import seaborn as sn
from scipy.stats import norm
import scipy.signal as sig
sr = 48000
T = 0.1 #seconds
N = int(T*sr)
n = arange(N)
t = n/srsilence = zeros(N)
np.random.seed(1) A = 1.0
a = 0.5
s = 0.1
powFund = A**2/2
powHarm = a**2/2
varnoise = s**2
f0 = 9000#*(sr/2)
h1 = f0*2.
noiseOnly = s*matlabRandn(len(t))
signalOnly = A * cos(pi*2*f0*t)
harmonicsOnly = a*sin(pi*2*t*h1)
y = signalOnly + harmonicsOnly + noiseOnlyfaxis,psX = sig.periodogram(signalOnly,fs=sr, window=('kaiser',38))
faxis,psH = sig.periodogram(harmonicsOnly,fs=sr, window=('kaiser',38))defSNR = 10*log10(powFund/varnoise)
print('SNR by definition, not computation: {} dB'.format(defSNR))faxis,ps = sig.periodogram(y,fs=sr, window=('kaiser',38))
fundBin = argmax(ps) _=plot(faxis,10*log10(ps), label='$y(n)$, the test signal')
_=plot(faxis,10*log10(psX),'--', label='$x(n)$, signal only', alpha=0.7)
_=plot(faxis,10*log10(psH),'--', label='$h(n)$, harmonics only', alpha=0.7)
title('Test Signal, SNR by definition: {} dB'.format(defSNR))
ylim([-100,0])
xlabel('Freq[Hz]')
ylabel('power [dB]')
legend()
grid(True)

输出

SNR by definition, not computation: 16.989700043360187 dB
def signalPower(x):return average(x**2)
def SNR(signal, noise):powS = signalPower(signal)powN = signalPower(noise)return 10*log10((powS-powN)/powN)
def SNRsystem(inputSig, outputSig):noise = outputSig-inputSigpowS = signalPower(outputSig)powN = signalPower(noise)return 10*log10((powS-powN)/powN)
method1 = SNR(exampleOutput,noiseOnly)
print("Result Method 1: {} dB".format(method1))

输出

Result Method 1: 17.971278119623197 dB
method2 = SNRsystem(exampleInput,exampleOutput)
print("Result Method 2: {} dB".format(method2))

输出

Result Method 2: 5.7231662754316766 dB

👉更新:亚图跨际

相关文章:

Python和MATLAB及C++信噪比导图(算法模型)

🎯要点 视频图像修复模数转换中混合信号链噪音测量频谱计算和量化周期性视觉刺激脑电图高斯噪声的矩形脉冲 总谐波失真 周期图功率谱密度各种心率失常检测算法胶体悬浮液跟踪检测计算交通监控摄像头图像噪音计算 Python信噪比 信噪比是科学和工程中使用的一种测…...

App及web反编译方案

APP反编译代码的工具下载: 下载地址:APK逆向三件套apktool-2.9.3.jar,dex2jar-2.0.zip,jd-gui-windows-1.6.6资源-CSDN文库 》dex2jar: 把dex文件转成jar文件 》 jd-gui: 这个工具用于将jar文件转换成java代码 》APKTool: 首先把…...

学成在线练习(HTML+CSS)

准备工作 项目目录 内部包含当前网站的所有素材,包含 HTML、CSS、图片、JavaScript等等 1.由于元素具有一些默认样式,可能是我们写网页过程中根本不需要的,所有我们可以在写代码之前就将其清除 base.css /* 基础公共样式:清除…...

istio中使用serviceentry结合egressgateway实现多版本路由

假设有一个外部服务,外部服务ip为:10.10.102.90,其中32033为v1版本,32034为v2版本。 现在需要把这个服务引入到istio中,使用egressgateway转发访问该服务的流量,并且需要实现多版本路由,使得he…...

Java项目——苍穹外卖(二)

Redis 简介 Redis是一个基于内存的key-value结构数据库 基于内存存储,读写性能高适合存储热点数据(热点商品、资讯、新闻)企业应用广泛 基础操作 启动 在redis安装目录中打开cmd,输入如上图指令即可启动,按下crtl…...

【Python日志功能】三.日志记录方法与多模块日志

文章目录 相关链接第三篇:日志记录方法与多模块日志1 基本日志记录方法2 在多个模块中使用日志3 文章总结 相关链接 【Python日志功能】一.日志基础与基本配置【Python日志功能】二.高级配置与日志处理器【Python日志功能】三.日志记录方法与多模块日志官方文档&am…...

在pycharm终端中运行pip命令安装模块时,出现了“你要如何打开这个文件”弹出窗口,是什么状况?

这种情况发生在Windows系统上,当在PyCharm终端中运行pip命令安装模块时,如果系统无法确定要使用哪个程序打开该文件,就会出现“你要如何打开这个文件”弹出窗口。 解决方法是: 选择“查找一个应用于此文件”的选项。在弹出的窗口…...

Axure多人协调的方式

当系统有多个模块,又由不同的产品经理负责设计,如何进行协调? 尝试过的方法 1)搭建Axure私服,用Axure的私服进行一个RP文件多人协同编辑; 2)用SVN管理RP文件,每次都要合并。 以上…...

【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程

【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程前言模型转换--pytorch转on…...

React学习笔记(1.0)

在使用vite创建react时,有一个语言选项,就是typescript-SWC,这里介绍一下SWC。 SWC:可扩展的Rust的平台,用于下一代快速开发工具,SWC比Babel快20倍。 简单来说,就是用于格式转换的&#xff0c…...

Axure RP实战:打造高效图形旋转验证码

Axure RP实战:打造高效图形旋转验证码 在数字产品设计的海洋中,验证码环节往往是用户交互体验的细微之处,却承载着验证用户身份的重要任务。 传统的文本验证码虽然简单直接,但随着用户需求的提高和设计趋势的发展,它…...

101012分页属性

4k页面 P(有效位):1有效,0无效 R/W(读写位):1可读可写,0可读 U/S(权限位):1(User),0(System) A(物理页访问位&#xff…...

从0-1 用AI做一个赚钱的小红书账号(不是广告不是广告)

大家好,我是胡广!是不是被标题吸引过来的呢?是不是觉得自己天赋异禀,肯定是那万中无一的赚钱天才。哈哈哈,我告诉你,你我皆是牛马,不要老想着突然就成功了,一夜暴富了,瞬…...

【Kubernetes】常见面试题汇总(十七)

目录 51.简述 Kubernetes 网络策略? 52.简述 Kubernetes 网络策略原理? 53.简述 Kubernetes 中 flannel 的作用? 54.简述 Kubernetes Calico 网络组件实现原理? 51.简述 Kubernetes 网络策略? - 为实现细粒度的容器…...

Vue 3 中动态赋值 ref 的应用

引言 Vue 3 引入了许多新特性,其中之一便是 Composition API。Composition API 提供了一种新的编程范式,使开发者能够更灵活地组织和复用逻辑。其中 ref 是一个核心概念,它允许我们在组件内部声明响应式的状态。本文将探讨如何在 Vue 3 中使…...

Spring Boot-应用启动问题

在使用 Spring Boot 进行开发时,应用启动问题是开发人员经常遇到的挑战之一。通过有效排查和解决这些问题,可以提高应用的稳定性和可靠性。 1. Spring Boot 启动问题的常见表现 Spring Boot 应用启动失败通常表现为以下几种情况: 应用启动…...

深入解析:如何通过网络命名空间跟踪单个进程的网络活动(C/C++代码实现)

在 Linux 系统中,网络命名空间(Network Namespaces)是一种强大的功能,它允许系统管理员和开发者隔离网络资源,使得每个命名空间都拥有独立的网络协议栈。这种隔离机制不仅用于容器技术如 Docker,也是网络安…...

C++ 科目二 [const_cast]

基础数据类型 const_cast 仅仅是深层拷贝改变,而不是改动之前的值 如果需要使用改动后的值,需要通过指针或者引用来间接使用 const int n 5; const string s "MyString";// cosnt_cast 针对指针,引用,this指针 // co…...

【电脑组装】✈️从配置拼装到安装系统组装自己的台式电脑

目录 🍸前言 🍻一、台式电脑基本组成 🍺二、组装 🍹三、安装系统 👋四、系统设置 👀五、章末 🍸前言 小伙伴们大家好,上篇文章分享了在平时开发的时候遇到的一种项目整合情况&…...

Hadoop生态圈拓展内容(一)

1. Hadoop的主要部分及其作用 HDFS(Hadoop分布式文件系统) HDFS是一个高容错、高可靠性、高可扩展性、高吞吐率的分布式文件存储系统,负责海量数据的存储。 YARN(资源管理调度系统) YARN是Hadoop的资源管理调度系统…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日&#xff0c;在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上&#xff0c;可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞&#xff0c;强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...