Python和MATLAB及C++信噪比导图(算法模型)
🎯要点
- 视频图像修复
- 模数转换中混合信号链噪音测量
- 频谱计算和量化周期性视觉刺激脑电图
- 高斯噪声的矩形脉冲 总谐波失真 周期图功率谱密度
- 各种心率失常检测算法
- 胶体悬浮液跟踪检测计算
- 交通监控摄像头图像噪音计算

Python信噪比
信噪比是科学和工程中使用的一种测量方法,用于比较所需信号水平与背景噪声水平。信噪比定义为信号功率与噪声功率之比,通常以分贝表示。高于 1:1(大于 0 dB)的比率表示信号大于噪声。
信噪比是影响处理或传输信号的系统(例如通信系统、音频系统、雷达系统、成像系统和数据采集系统)的性能和质量的重要参数。高信噪比意味着信号清晰且易于检测或解释,而低信噪比意味着信号被噪声破坏或遮蔽,可能难以区分或恢复。可以通过各种方法来提高信噪比,例如增加信号强度、降低噪声水平、滤除不需要的噪声或使用纠错技术。
信噪比的一种定义是信号(有意义的输入)的功率与背景噪声(无意义或不需要的输入)的功率之比:
S N R = P 信号 P 噪声 SNR =\frac{P_{\text {信号 }}}{P_{\text {噪声 }}} SNR=P噪声 P信号
其中 P P P 是平均功率。信号功率和噪声功率必须在系统中相同或等效的点以及相同的系统带宽内进行测量。
随机变量 ( S ) (S) (S) 与随机噪声 N N N 的信噪比为:
S N R = E [ S 2 ] E [ N 2 ] SNR =\frac{ E \left[S^2\right]}{ E \left[N^2\right]} SNR=E[N2]E[S2]
其中 E 指的是期望值,在本例中是 N N N 的均方。
如果信号只是 s s s 的常数值,则该方程简化为
S N R = s 2 E [ N 2 ] SNR =\frac{s^2}{ E \left[N^2\right]} SNR=E[N2]s2
如果噪声的预期值为零(通常如此),则分母是其方差,即其标准差的平方 σ N \sigma_{ N } σN。
信号和噪声必须以相同的方式测量,例如相同阻抗上的电压。它们的均方根也可以根据以下公式使用:
S N R = P 信号 P 噪声 = ( A 信号 A 噪声 ) 2 SNR =\frac{P_{\text {信号 }}}{P_{\text {噪声 }}}=\left(\frac{A_{\text {信号 }}}{A_{\text {噪声 }}}\right)^2 SNR=P噪声 P信号 =(A噪声 A信号 )2
其中 A A A 是均方根 (RMS) 幅度(例如,RMS 电压)。
Python量化噪声
一种情景,估算信号本身的功率,从而估算出信号与噪声功率之间的比率(假设噪声功率保持不变)。
S N R d b = 10 ⋅ log 10 P s − P n P n S N R_{d b}=10 \cdot \log _{10} \frac{P_s-P_n}{P_n} SNRdb=10⋅log10PnPs−Pn
另一种情景,使系统尽可能干净(例如,在单位增益下绕过或类似装置!),测量输入信号功率和输出信号功率,并假设它们之间的差异就是所添加的噪声水平:
P n = P o − P i P_n=P_o-P_i Pn=Po−Pi
其余换算与第一种情景相同。
import seaborn as sn
from scipy.stats import norm
import scipy.signal as sig
sr = 48000
T = 0.1 #seconds
N = int(T*sr)
n = arange(N)
t = n/srsilence = zeros(N)
np.random.seed(1) A = 1.0
a = 0.5
s = 0.1
powFund = A**2/2
powHarm = a**2/2
varnoise = s**2
f0 = 9000#*(sr/2)
h1 = f0*2.
noiseOnly = s*matlabRandn(len(t))
signalOnly = A * cos(pi*2*f0*t)
harmonicsOnly = a*sin(pi*2*t*h1)
y = signalOnly + harmonicsOnly + noiseOnlyfaxis,psX = sig.periodogram(signalOnly,fs=sr, window=('kaiser',38))
faxis,psH = sig.periodogram(harmonicsOnly,fs=sr, window=('kaiser',38))defSNR = 10*log10(powFund/varnoise)
print('SNR by definition, not computation: {} dB'.format(defSNR))faxis,ps = sig.periodogram(y,fs=sr, window=('kaiser',38))
fundBin = argmax(ps) _=plot(faxis,10*log10(ps), label='$y(n)$, the test signal')
_=plot(faxis,10*log10(psX),'--', label='$x(n)$, signal only', alpha=0.7)
_=plot(faxis,10*log10(psH),'--', label='$h(n)$, harmonics only', alpha=0.7)
title('Test Signal, SNR by definition: {} dB'.format(defSNR))
ylim([-100,0])
xlabel('Freq[Hz]')
ylabel('power [dB]')
legend()
grid(True)
输出
SNR by definition, not computation: 16.989700043360187 dB
def signalPower(x):return average(x**2)
def SNR(signal, noise):powS = signalPower(signal)powN = signalPower(noise)return 10*log10((powS-powN)/powN)
def SNRsystem(inputSig, outputSig):noise = outputSig-inputSigpowS = signalPower(outputSig)powN = signalPower(noise)return 10*log10((powS-powN)/powN)
method1 = SNR(exampleOutput,noiseOnly)
print("Result Method 1: {} dB".format(method1))
输出
Result Method 1: 17.971278119623197 dB
method2 = SNRsystem(exampleInput,exampleOutput)
print("Result Method 2: {} dB".format(method2))
输出
Result Method 2: 5.7231662754316766 dB
👉更新:亚图跨际
相关文章:
Python和MATLAB及C++信噪比导图(算法模型)
🎯要点 视频图像修复模数转换中混合信号链噪音测量频谱计算和量化周期性视觉刺激脑电图高斯噪声的矩形脉冲 总谐波失真 周期图功率谱密度各种心率失常检测算法胶体悬浮液跟踪检测计算交通监控摄像头图像噪音计算 Python信噪比 信噪比是科学和工程中使用的一种测…...
App及web反编译方案
APP反编译代码的工具下载: 下载地址:APK逆向三件套apktool-2.9.3.jar,dex2jar-2.0.zip,jd-gui-windows-1.6.6资源-CSDN文库 》dex2jar: 把dex文件转成jar文件 》 jd-gui: 这个工具用于将jar文件转换成java代码 》APKTool: 首先把…...
学成在线练习(HTML+CSS)
准备工作 项目目录 内部包含当前网站的所有素材,包含 HTML、CSS、图片、JavaScript等等 1.由于元素具有一些默认样式,可能是我们写网页过程中根本不需要的,所有我们可以在写代码之前就将其清除 base.css /* 基础公共样式:清除…...
istio中使用serviceentry结合egressgateway实现多版本路由
假设有一个外部服务,外部服务ip为:10.10.102.90,其中32033为v1版本,32034为v2版本。 现在需要把这个服务引入到istio中,使用egressgateway转发访问该服务的流量,并且需要实现多版本路由,使得he…...
Java项目——苍穹外卖(二)
Redis 简介 Redis是一个基于内存的key-value结构数据库 基于内存存储,读写性能高适合存储热点数据(热点商品、资讯、新闻)企业应用广泛 基础操作 启动 在redis安装目录中打开cmd,输入如上图指令即可启动,按下crtl…...
【Python日志功能】三.日志记录方法与多模块日志
文章目录 相关链接第三篇:日志记录方法与多模块日志1 基本日志记录方法2 在多个模块中使用日志3 文章总结 相关链接 【Python日志功能】一.日志基础与基本配置【Python日志功能】二.高级配置与日志处理器【Python日志功能】三.日志记录方法与多模块日志官方文档&am…...
在pycharm终端中运行pip命令安装模块时,出现了“你要如何打开这个文件”弹出窗口,是什么状况?
这种情况发生在Windows系统上,当在PyCharm终端中运行pip命令安装模块时,如果系统无法确定要使用哪个程序打开该文件,就会出现“你要如何打开这个文件”弹出窗口。 解决方法是: 选择“查找一个应用于此文件”的选项。在弹出的窗口…...
Axure多人协调的方式
当系统有多个模块,又由不同的产品经理负责设计,如何进行协调? 尝试过的方法 1)搭建Axure私服,用Axure的私服进行一个RP文件多人协同编辑; 2)用SVN管理RP文件,每次都要合并。 以上…...
【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程
【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【OnnxRuntime】【Python】模型转化、环境搭建以及模型部署的详细教程前言模型转换--pytorch转on…...
React学习笔记(1.0)
在使用vite创建react时,有一个语言选项,就是typescript-SWC,这里介绍一下SWC。 SWC:可扩展的Rust的平台,用于下一代快速开发工具,SWC比Babel快20倍。 简单来说,就是用于格式转换的,…...
Axure RP实战:打造高效图形旋转验证码
Axure RP实战:打造高效图形旋转验证码 在数字产品设计的海洋中,验证码环节往往是用户交互体验的细微之处,却承载着验证用户身份的重要任务。 传统的文本验证码虽然简单直接,但随着用户需求的提高和设计趋势的发展,它…...
101012分页属性
4k页面 P(有效位):1有效,0无效 R/W(读写位):1可读可写,0可读 U/S(权限位):1(User),0(System) A(物理页访问位ÿ…...
从0-1 用AI做一个赚钱的小红书账号(不是广告不是广告)
大家好,我是胡广!是不是被标题吸引过来的呢?是不是觉得自己天赋异禀,肯定是那万中无一的赚钱天才。哈哈哈,我告诉你,你我皆是牛马,不要老想着突然就成功了,一夜暴富了,瞬…...
【Kubernetes】常见面试题汇总(十七)
目录 51.简述 Kubernetes 网络策略? 52.简述 Kubernetes 网络策略原理? 53.简述 Kubernetes 中 flannel 的作用? 54.简述 Kubernetes Calico 网络组件实现原理? 51.简述 Kubernetes 网络策略? - 为实现细粒度的容器…...
Vue 3 中动态赋值 ref 的应用
引言 Vue 3 引入了许多新特性,其中之一便是 Composition API。Composition API 提供了一种新的编程范式,使开发者能够更灵活地组织和复用逻辑。其中 ref 是一个核心概念,它允许我们在组件内部声明响应式的状态。本文将探讨如何在 Vue 3 中使…...
Spring Boot-应用启动问题
在使用 Spring Boot 进行开发时,应用启动问题是开发人员经常遇到的挑战之一。通过有效排查和解决这些问题,可以提高应用的稳定性和可靠性。 1. Spring Boot 启动问题的常见表现 Spring Boot 应用启动失败通常表现为以下几种情况: 应用启动…...
深入解析:如何通过网络命名空间跟踪单个进程的网络活动(C/C++代码实现)
在 Linux 系统中,网络命名空间(Network Namespaces)是一种强大的功能,它允许系统管理员和开发者隔离网络资源,使得每个命名空间都拥有独立的网络协议栈。这种隔离机制不仅用于容器技术如 Docker,也是网络安…...
C++ 科目二 [const_cast]
基础数据类型 const_cast 仅仅是深层拷贝改变,而不是改动之前的值 如果需要使用改动后的值,需要通过指针或者引用来间接使用 const int n 5; const string s "MyString";// cosnt_cast 针对指针,引用,this指针 // co…...
【电脑组装】✈️从配置拼装到安装系统组装自己的台式电脑
目录 🍸前言 🍻一、台式电脑基本组成 🍺二、组装 🍹三、安装系统 👋四、系统设置 👀五、章末 🍸前言 小伙伴们大家好,上篇文章分享了在平时开发的时候遇到的一种项目整合情况&…...
Hadoop生态圈拓展内容(一)
1. Hadoop的主要部分及其作用 HDFS(Hadoop分布式文件系统) HDFS是一个高容错、高可靠性、高可扩展性、高吞吐率的分布式文件存储系统,负责海量数据的存储。 YARN(资源管理调度系统) YARN是Hadoop的资源管理调度系统…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
