当前位置: 首页 > news >正文

【Kubernetes】常见面试题汇总(十七)

目录

 

51.简述 Kubernetes 网络策略?

52.简述 Kubernetes 网络策略原理?

53.简述 Kubernetes 中 flannel 的作用?

54.简述 Kubernetes Calico 网络组件实现原理?


51.简述 Kubernetes 网络策略?

- 为实现细粒度的容器间网络访问隔离策略,Kubernetes 引入 Network Policy。

- Network Policy 的主要功能是对 Pod 间的网络通信进行限制和准入控制,设置允许访问或禁止访问的客户端 Pod 列表。

- Network Policy 定义网络策略,配合策略控制器(Policy Controller)进行策略的实现。


52.简述 Kubernetes 网络策略原理?

Network Policy 的工作原理主要为:

policy controller 需要实现一个  API Listener,监听用户设置的 Network Policy 定义,并将网络访问规则通过各 Node 的 Agent 进行实际设置(Agent 则需要通过 CNI 网络插件实现)。


53.简述 Kubernetes 中 flannel 的作用?

Flannel 可以用于 Kubernetes 底层网络的实现,主要作用有:

① 它能协助 Kubernetes,给每一个 Node 上的 Docker 容器都分配互相不冲突的 IP 地址

② 它能在这些 IP 地址之间建立一个覆盖网络(Overlay Network),通过这个覆盖网络,将数据包原封不动地传递到目标容器内。


54.简述 Kubernetes Calico 网络组件实现原理?

- Calico 是一个基于 BGP 的纯三层的网络方案,与 OpenStack、Kubernetes、AWS、GCE 等云平台都能够良好地集成。

- Calico 在每个计算节点都利用 Linux Kernel 实现了一个高效的 vRouter 来负责数据转发。每个 vRouter 都通过 BGP 协议把在本节点上运行的容器的路由信息向整个 Calico 网络广播,并自动设置到达其他节点的路由转发规则。

- Calico 保证所有容器之间的数据流量都是通过 IP 路由的方式完成互联互通的。

- Calico 节点组网时可以直接利用数据中心的网络结构(L2 或者 L3),不需要额外的 NAT、隧道或者 Overlay Network,没有额外的封包解包,能够节约 CPU 运算,提高网络效率。

 

相关文章:

【Kubernetes】常见面试题汇总(十七)

目录 51.简述 Kubernetes 网络策略? 52.简述 Kubernetes 网络策略原理? 53.简述 Kubernetes 中 flannel 的作用? 54.简述 Kubernetes Calico 网络组件实现原理? 51.简述 Kubernetes 网络策略? - 为实现细粒度的容器…...

Vue 3 中动态赋值 ref 的应用

引言 Vue 3 引入了许多新特性,其中之一便是 Composition API。Composition API 提供了一种新的编程范式,使开发者能够更灵活地组织和复用逻辑。其中 ref 是一个核心概念,它允许我们在组件内部声明响应式的状态。本文将探讨如何在 Vue 3 中使…...

Spring Boot-应用启动问题

在使用 Spring Boot 进行开发时,应用启动问题是开发人员经常遇到的挑战之一。通过有效排查和解决这些问题,可以提高应用的稳定性和可靠性。 1. Spring Boot 启动问题的常见表现 Spring Boot 应用启动失败通常表现为以下几种情况: 应用启动…...

深入解析:如何通过网络命名空间跟踪单个进程的网络活动(C/C++代码实现)

在 Linux 系统中,网络命名空间(Network Namespaces)是一种强大的功能,它允许系统管理员和开发者隔离网络资源,使得每个命名空间都拥有独立的网络协议栈。这种隔离机制不仅用于容器技术如 Docker,也是网络安…...

C++ 科目二 [const_cast]

基础数据类型 const_cast 仅仅是深层拷贝改变,而不是改动之前的值 如果需要使用改动后的值,需要通过指针或者引用来间接使用 const int n 5; const string s "MyString";// cosnt_cast 针对指针,引用,this指针 // co…...

【电脑组装】✈️从配置拼装到安装系统组装自己的台式电脑

目录 🍸前言 🍻一、台式电脑基本组成 🍺二、组装 🍹三、安装系统 👋四、系统设置 👀五、章末 🍸前言 小伙伴们大家好,上篇文章分享了在平时开发的时候遇到的一种项目整合情况&…...

Hadoop生态圈拓展内容(一)

1. Hadoop的主要部分及其作用 HDFS(Hadoop分布式文件系统) HDFS是一个高容错、高可靠性、高可扩展性、高吞吐率的分布式文件存储系统,负责海量数据的存储。 YARN(资源管理调度系统) YARN是Hadoop的资源管理调度系统…...

使用随机森林模型在digits数据集上执行分类任务

程序功能 使用随机森林模型对digits数据集进行手写数字分类任务。具体步骤如下: 加载数据:从digits数据集中获取手写数字图片的特征和对应的标签。 划分数据:将数据集分为训练集和测试集,测试集占30%。 训练模型:使用…...

后端开发刷题 | 打家劫舍

描述 你是一个经验丰富的小偷,准备偷沿街的一排房间,每个房间都存有一定的现金,为了防止被发现,你不能偷相邻的两家,即,如果偷了第一家,就不能再偷第二家;如果偷了第二家&#xff0…...

欧美游戏市场的差异

欧洲和美国的游戏市场虽然高度发达且利润丰厚,但表现出由文化偏好、消费者行为、监管环境和平台受欢迎程度塑造的独特特征。这些差异对于寻求为每个地区量身定制策略的游戏开发商和发行商来说非常重要。 文化偏好和游戏类型 美国:美国游戏市场倾向于青…...

DeDeCMS靶场漏洞复现

打开靶场地址 姿势一:通过文件管理器上传webshell 1.登录后台 dedecms默认的后台登录地址为/dede 2.在附加管理里的文件式管理器中有文件上传 3.上传木马文件 4.访问木马文件 并连接 姿势二:修改模板文件获取webshell 1.点击模板里面的默认模板管理 …...

Transformer模型详细步骤

Transformer模型是nlp任务中不能绕开的学习任务,我将从数据开始,每一步骤都列举出来,然后对应重点的代码进行讲解 ------------------------------------------------------------------------------------------------------------- Trans…...

LC并联电路在正弦稳态下的传递函数推导(LC并联谐振选频电路)

LC并联电路在正弦稳态下的传递函数推导(LC并联谐振选频电路) 本文通过 1.解微分方程、2.阻抗模型两种方法推导 LC 并联选频电路在正弦稳态条件下的传递函数,并通过仿真验证不同频率时 vo(t) 与 vi(t) 的幅值相角的关系。 电路介绍 已知条件…...

【前后端】大文件切片上传

Ruoyi框架上传文件_若依微服务框架 文件上传-CSDN博客 原理介绍 大文件上传时,如果直接上传整个文件,可能会因为文件过大导致上传失败、服务器超时或内存溢出等问题。因此,通常采用文件切片(Chunking)的方式来解决这些…...

图像处理 -- ISP功能之局部对比度增强 LCE

局部对比度增强(LCE) 局部对比度增强(Local Contrast Enhancement, LCE)是一种图像处理技术,旨在通过调整图像的局部区域对比度,增强图像细节和视觉效果。LCE 的实现方式多种多样,以下是几种常…...

C++速通LeetCode简单第5题-回文链表

解法1,堆栈O(n)简单法: /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListN…...

【Java 优选算法】双指针(下)

欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 有效三角形的个数 题目链接 解法 解法1:暴力枚举--->O(n^3) 解法2:利用单调性,使用双指针来解决---->O(n^2) 优化:对整个数组进行排序先固定最大数在最大数的左…...

动态规划:07.路径问题_珠宝的最大价值_C++

题目链接:LCR 166. 珠宝的最高价值 - 力扣(LeetCode)https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/description/ 一、题目解析 题目: 解析: 有过做前几道题的经验,我们会发现这道题其实就…...

COMDEL电源CX2500S RF13.56MHZ RF GENERATOR手侧

COMDEL电源CX2500S RF13.56MHZ RF GENERATOR手侧...

GPU加速生物信息分析的尝试

GPU工具分类 实话实说,暂时只有英伟达的GPU才能实现比较方便的基因组分析集成化解决方案,其他卡还需要努力呀,或者需要商业公司或学术团体的努力开发呀!FPGA等这种专用卡的解决方案也是有的,比如某测序仪厂家&#xf…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

前端调试HTTP状态码

1xx(信息类状态码) 这类状态码表示临时响应,需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分,客户端应继续发送剩余部分。 2xx(成功类状态码) 表示请求已成功被服务器接收、理解并处…...

__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.

这个警告表明您在使用Vue的esm-bundler构建版本时,未明确定义编译时特性标志。以下是详细解释和解决方案: ‌问题原因‌: 该标志是Vue 3.4引入的编译时特性标志,用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...

6.9本日总结

一、英语 复习默写list11list18,订正07年第3篇阅读 二、数学 学习线代第一讲,写15讲课后题 三、408 学习计组第二章,写计组习题 四、总结 明天结束线代第一章和计组第二章 五、明日计划 英语:复习l默写sit12list17&#…...

RLHF vs RLVR:对齐学习中的两种强化方式详解

在语言模型对齐(alignment)中,强化学习(RL)是一种重要的策略。而其中两种典型形式——RLHF(Reinforcement Learning with Human Feedback) 与 RLVR(Reinforcement Learning with Ver…...