Docker torchserve 部署模型流程
1.拉取官方镜像
地址: https://hub.docker.com/r/pytorch/torchserve/tags
docker pull pytorch/torchserve:0.7.1-gpu
2. docker启动指令
CPU
docker run --rm -it -d -p 8380:8080 -p 8381:8081 --name torch-server -v /path/model-server/extra-files:/home/model-server/extra-files -v /path/model-server/model-store:/home/model-server/model-store pytorch/torchserve:0.7.1-gpu
GPU
docker run --rm -it -d --gpus all -p 8380:8080 -p 8381:8081 --name torch-server -v /path/model-server/extra-files:/home/model-server/extra-files -v /path/model-server/model-store:/home/model-server/model-store pytorch/torchserve:0.7.1-gpu
/home/model-server/model-store 是docker映射地址,不能更改
进入容器,可以发现各个端口的意义,8080是通信访问接口,8081是管理服务配置接口,8082是服务监控接口

3. 打包模型文件
3.1 使用框架中脚本或者自己写脚本将模型转为torchscript(.pt)
3.2 torchscript转.mar文件
(1) run_hander.py
from xx_model_handler import KnowHandler_service = KnowHandler()def handle(data, context):try:if not _service.initialized:print('ENTERING INITIALIZATION')_service.initialize(context)if data is None:return Nonedata = _service.preprocess(data)data = _service.inference(data)data = _service.postprocess(data)return dataexcept Exception as e:raise Exception("Unable to process input data. " + str(e))
(2) xx_model_handler.py
"""
ModelHandler defines a custom model handler.
"""
import torch
import os
import json
import logging
from transformers import BertTokenizerclass KnowHandler(object):"""A custom model handler implementation."""def __init__(self):super(KnowHandler, self).__init__()self.initialized = Falsedef initialize(self, ctx):"""Initialize model. This will be called during model loading time:param context: Initial context contains model server system properties.:return:"""self.manifest = ctx.manifestproperties = ctx.system_propertiesmodel_dir = properties.get("model_dir")serialized_file = self.manifest["model"]["serializedFile"]model_pt_path = os.path.join(model_dir, serialized_file)self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")config_path = os.path.join(model_dir, "config.json")with open(config_path,"r") as fr:setup_config = json.load(fr)self.model = torch.jit.load(model_pt_path, map_location=self.device)self.tokenizer = BertTokenizer(setup_config["vocab_path"])self.max_length = setup_config["max_length"]self.initialized = True# load the model, refer 'custom handler class' above for detailsdef preprocess(self, data):"""Transform raw input into model input data.:param batch: list of raw requests, should match batch size:return: list of preprocessed model input data"""# Take the input data and make it inference readypreprocessed_data = data[0].get("data")if preprocessed_data is None:preprocessed_data = data[0].get("body")inputs = preprocessed_data.decode('utf-8')inputs = json.loads(inputs) # {"text": []}return inputsdef inference(self, model_input):"""Internal inference methods:param model_input: transformed model input data:return: list of inference output in NDArray"""# Do some inference call to engine here and return outputtext = model_input["text"]inputs = self.tokenizer(text,max_length=self.max_length,truncation=True,padding='max_length',return_tensors='pt')#inputs = {k: torch.as_tensor(v, dtype=torch.int64) for k, v in inputs.items()}for key, value in inputs.items():if isinstance(value, torch.Tensor):inputs[key] = value.to(self.device)input_ids = inputs['input_ids']token_type_ids = inputs['token_type_ids']attention_mask = inputs['attention_mask']logits = self.model(input_ids,attention_mask,token_type_ids)return logitsdef postprocess(self, inference_output):"""Return inference result.:param inference_output: list of inference output:return: list of predict results"""# Take output from network and post-process to desired formatpostprocess_output = [inference_output.tolist()]return postprocess_output
(3) config.json
{"threshold": 0.8,"max_length": 40
}
torch-model-archiver --model-name {name of model} --version {模型版本} --serialized-file {torchscript文件地址} --export-path {.mar文件存放地址} --handler run_handler.py --extra-files {其它文件如配置文件等} --runtime python3 -f
torch-model-archiver --model-name my_model --version 1.0 --serialized-file /path/mymodel.pt --export-path /home/model-server/model-store --handler run_handler.py --extra-files "xx_model_handler,utils.py,config.json,vocab.txt" --runtime python -f
–model-name: 模型的名称,后来的接口名称和管理的模型名称都是这个
–serialized-file: 模型环境及代码及参数的打包文件
–export-path: 本次打包文件存放位置
–extra-files: handle.py中需要使用到的其他文件
–handler: 指定handler函数。(模型名:函数名)
-f 覆盖之前导出的同名打包文件
4. torchserver配置接口
(1)查询已注册的模型
curl "http://localhost:8381/models"
(2)注册模型并为模型分配资源
将.mar模型文件注册,注意:.mar文件必须放在model-store文件夹下,即/path/model-server/model-store
curl -X POST "{ip:port}/models?url={.mar文件名}&model_name={model_name}&batch_size=8&max_batch_delay=10&initial_workers=1"curl -X POST "localhost:8381/models?url=my_model.mar&model_name=my_model&batch_size=8&max_batch_delay=10&initial_workers=1"
(3)查看模型状态
curl http://localhost:8381/models/{model_name}
(4)删除注册模型
curl -X DELETE http://localhost:8381/models/{model_name}/{version}
5. 模型推理
response = requests.post('http://localhost:8380/predictions/{model_name}/{version}',data = data)
# -*- coding: utf-8 -*-
import requests
import json
text = ['xxxxx']
data = {'data':json.dumps({'text':text})}
print(data)
response = requests.post('http://localhost:8380/predictions/my_model',data = data)
print(response)
if response.status_code==200:vectors = response.json()print(vectors)
参考:
https://blog.51cto.com/u_16213661/8750698
https://blog.csdn.net/wangzitaotao/article/details/131101852
https://pytorch.org/serve/index.html
https://docs.aws.amazon.com/zh_cn/sagemaker/latest/dg/deploy-models-frameworks-torchserve.html
相关文章:
Docker torchserve 部署模型流程
1.拉取官方镜像 地址: https://hub.docker.com/r/pytorch/torchserve/tags docker pull pytorch/torchserve:0.7.1-gpu2. docker启动指令 CPU docker run --rm -it -d -p 8380:8080 -p 8381:8081 --name torch-server -v /path/model-server/extra-files:/home/model-serve…...
mybatis开启日志
步骤很详细,直接上教程 配置文件的文件格式可能有所不同,这里列举两种 配置方法 一. application.properties(默认 # 配置mybatis的日志信息 mybatis.configuration.log-implorg.apache.ibatis.logging.stdout.StdOutImpl二. application.y…...
MobaXterm : Network error: Connection refused(连接被拒绝)
具体报错如下如所示: 首先进行问题排查 ① 检查SSH服务是否运行 sudo service ssh status ② 检查SSH服务是否已启动(启用返回 enable) sudo systemctl is-enabled ssh ③ 查看所有的端口 sudo netstat -tulnp ④ 查看SSH使用的22号端口有…...
电脑的主板,内存条插多少合适?
首先,不是插满4条内存就是最好的。 内存条插得多,确实可以扩充容量,提升性能。但是有些低端的主板配低端CPU,插满4条内存,稳定性下降。这里的稳定性包括供电,单独的内存供电容量等。此时CPU会通过降低内存…...
C++:初始化列表
构造函数在上一篇帖子我们提到了对成员变量初始化的功能,出了在构造函数的函数体中队成员变量一个一个赋值以外,我们还可以采用初始化列表。 #include<iostream> using namespace std;class AA { private:int a;const int b; public:AA():b(200),…...
[000-01-008].第05节:OpenFeign特性-重试机制
我的后端学习大纲 SpringCloud学习大纲 1.1.重试机制的默认值: 1.重试机制默认是关闭的,给了默认值 1.2.测试重试机制的默认值: 1.3.开启Retryer功能: 1.修改配置文件YML的配置: 2.新增配置类: packa…...
Android 11(API 级别 30)及以上版本中,将Bitmap保存到设备上
调用 saveBitmapToMediaStore(getContentResolver(),bitmap,“图片名”,mimeType); 参数解析: Bitmap myBitmap ...; // 这里应该是你获取或创建Bitmap的代码 private String mimeType "image/jpeg"; // 或者"image/png",取决于…...
django orm增删改查操作
1. 基本操作 1.1 创建对象 可以通过 Django ORM 来创建数据库中的记录。 示例: # 方法1:先创建对象,再保存 person Person(nameAlice, age30, emailaliceexample.com) person.save()# 方法2:直接创建 person Person.objects…...
禁忌搜索算法(TS算法)求解实例---旅行商问题 (TSP)
目录 一、采用TS求解 TSP二、 旅行商问题2.1 实际例子:求解 6 个城市的 TSP2.2 **求解该问题的代码**2.3 代码运行过程截屏2.4 代码运行结果截屏(后续和其他算法进行对比) 三、 如何修改代码?3.1 减少城市坐标,如下&am…...
Rust 所有权 简介
文章目录 发现宝藏1. 所有权基本概念2. 所有权规则3. 变量作用域4. 栈与堆4.1 栈(Stack)4.2 堆(Heap) 5. String类型5.1 String 类型5.2 String 的内存分配5.3 所有权与内存管理5.4 String 与切片 6. 变量与数据交互方式6.1 移动&…...
linux-网络管理-防火墙配置
Linux 网络管理:防火墙配置 1. 防火墙概述 防火墙是保护计算机系统和网络免受未经授权访问和网络攻击的安全机制。Linux 系统中,防火墙通过控制进入和离开网络的数据包,实现网络流量的过滤和管理。 Linux 上的防火墙配置工具有多种&#x…...
【springboot】实现文件上传和下载
目录 1. 新建一个springboot项目2. 配置文件application.propertiesapplication.yml 3. 控制类实现文件上传和下载4. 测试 1. 新建一个springboot项目 新建一个springboot项目,选择web,默认即可. 主要pom配置文件如下: <parent><gr…...
【RabbitMQ】RabbitMQ如何保证数据的可靠性,RabbitMQ如何保证数据不丢失,数据存储
【RabbitMQ】RabbitMQ如何保证数据的可靠性,RabbitMQ如何保证数据不丢失,数据存储 RabbitMQ通过一系列机制来确保数据(即消息)在传输和处理过程中不丢失。这些机制主要包括以下几个方面: 1. 消息持久化 持久化消息&a…...
Redis 篇-初步了解 Redis 持久化、Redis 主从集群、Redis 哨兵集群、Redis 分片集群
🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 分布式缓存概述 2.0 Redis 持久化 2.1 RDB 持久化 2.1.1 RDB 的 fork 原理 2.2 AOF 持久化 2.3 RDB 与 AOF 之间的区别 3.0 Redis 主从集群 3.1 搭建主从集群 3.2…...
算法基础-二分查找
左闭右闭 [ left,right ] [1,1]可以 while( left < right ) if( a[mid] > target ) right mid - 1 else if( a[mid] < target ) left mid 1 左闭右开 [ left,right ) …...
LeetCode:1184. 公交站间的距离 一次遍历数组,复杂度O(n)
1184. 公交站间的距离 today 1184 公交站间的距离 题目描述 环形公交路线上有 n 个站,按次序从 0 到 n - 1 进行编号。我们已知每一对相邻公交站之间的距离,distance[i] 表示编号为 i 的车站和编号为 (i 1) % n 的车站之间的距离。 环线上的公交车都…...
牛客周赛 Round 60(A,B,C,D,E,F)
比赛链接 官方题解 这场基本都是数学题,官方题解讲的还不错,F能听懂的话其实不难。E是一个球盒模型的组合问题,F是化简递推式,成环时的解决方法很不错。 A 困难数学题 思路: 一个数异或两次结果为 0 0 0ÿ…...
vueCropper裁剪图片(不模糊)以及记录使用方法
需求:上传限定比例的图片。前端框架是vue3 element plus。 问题:使用vueCropper后比例固定。但是上传后的图片很模糊 vueCropper官网 解决办法 vueCropper中有一个full和high两个参数,记得开启 const options: any reactive({img: , // 原…...
【HTML】HTML页面和常见标签
文章目录 什么是前端HTML 页面编写如何快速生成代码框架常见标签注释标签标题标签段落标签换行标签格式化标签 什么是前端 Web 前端,用来直接给以用户呈现的一个一个的网页。一个软件通常是由 后端前端 完成的 后端:通过 Java/C等语言,完成相…...
鸿蒙 ArkUI组件二
ArkUI组件(续) 文本组件 在HarmonyOS中,Text/Span组件是文本控件中的一个关键部分。Text控件可以用来显示文本内容,而Span只能作为Text组件的子组件显示文本内容。 Text/Span组件的用法非常简单和直观。我们可以通过Text组件来显…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
