时间复杂度计算 递归(solve2 后续)
原帖
最近校内比较忙,更新缓慢,致歉。
这里函数每次都需要遍历 h h h 和 m m m 之间的数(复杂度 O ( n ) O(n) O(n)),所以和 solve1 略有不同。仍然假设 T ( n ) \operatorname{T}(n) T(n) 表示 m − h + 1 = n m-h+1=n m−h+1=n 时的复杂度。
T ( n ) = 2 × T ( n / 2 ) + n = 2 × ( 2 × T ( n / 4 ) + n / 2 ) + n = 4 × T ( n / 4 ) + 2 n \operatorname{T}(n)=2\times\operatorname{T}(n/2)+n=2\times(2\times\operatorname{T}(n/4)+n/2)+n=4\times\operatorname{T}(n/4)+2n T(n)=2×T(n/2)+n=2×(2×T(n/4)+n/2)+n=4×T(n/4)+2n
总结一下规律,就是: T ( n ) = 2 k × T ( n / 2 k ) + k n \operatorname{T}(n)=2^k\times\operatorname{T}(n/2^k)+kn T(n)=2k×T(n/2k)+kn,这里 k = l o g 2 n k=log_2n k=log2n。(假设 k k k 是下取整的,造成的误差在计算时间复杂度时可忽略不计)。
T ( n ) = 2 k + n k = n + n k \operatorname{T}(n)=2^{k}+nk=n+nk T(n)=2k+nk=n+nk,相当于 O ( n l o g n ) O(nlogn) O(nlogn) 的复杂度。
相关文章:

时间复杂度计算 递归(solve2 后续)
原帖 最近校内比较忙,更新缓慢,致歉。 这里函数每次都需要遍历 h h h 和 m m m 之间的数(复杂度 O ( n ) O(n) O(n)),所以和 solve1 略有不同。仍然假设 T ( n ) \operatorname{T}(n) T(n) 表示 m − h 1 n…...
Nginx:高性能Web服务器与反向代理的深度剖析
Nginx:高性能Web服务器与反向代理的深度剖析 Nginx(发音为“engine X”)是一款轻量级但功能强大的Web服务器和反向代理服务器,以其高并发处理能力、低内存占用和灵活的扩展性在互联网项目中得到了广泛应用。本文将深入探讨Nginx…...

JavaSE - 面向对象编程03
01 多态 01_01 认识多态 01_02 多态的好处和缺点 【1】好处:① 可以解耦合,扩展性更强,父类引用指向的子类对象可以随时切换,而后面的逻辑代码并不需要更改。 ② 使用父类引用可以作为方法的形参或返回类型来接收一切子类对象。…...

变电站缺陷数据集8307张,带xml标注和txt标注,可以直接用于yolo训练
变电站缺陷数据集8307张, 带xml标注和txt标注,可以直接用于yolo训练,赠附五个脚本 变电站缺陷数据集 数据集概述 变电站缺陷数据集是一个专门针对变电站设备和环境缺陷检测的图像数据集。该数据集包含了8307张经过标注的图像,旨…...

Redis的存储原理和数据模型
一、Redis是单线程还是多线程呢? 我们通过跑redis的代码,查看运行的程序可以得知,Redis本身其实是个多线程,其中包括redis-server,bio_close_file,bio_aof_fsync,bio_lazy_free,io_t…...

Linux 文件与目录操作命令详解
文章目录 前言创建文件1. touch2. vim 文件内容显示3. cat4. more5. less6. head7. tail 文件(目录)复制、删除和移动8. cp9. rm10. mv 压缩文件与解压缩11. gzip12. zip 和 unzip 创建目录13. mkdir 删除目录14. rmdir 改变工作目录15. cd16. pwd 显示目…...

MySQL篇(窗口函数/公用表达式(CTE))
目录 讲解一:窗口函数 一、简介 二、常见操作 1. sumgroup by常规的聚合函数操作 2. sum窗口函数的聚合操作 三、基本语法 1. Function(arg1,..., argn) 1.1. 聚合函数 sum函数:求和 min函数 :最小值 1.2. 排序函数 1.3. 跨行函数…...
408算法题leetcode--第七天
283. 移动零 283. 移动零思路:代码中注释阐述时间:O(n);空间:O(1) class Solution { public:void moveZeroes(vector<int>& nums) {// 简单思路:用一个辅助数组,将非0元素复制到里面// 双指针&…...
政务安全体系构建中的挑战
在数字化政务安全体系的构建过程中,面临着几个关键的挑战: ▋挑战一:安全防护滞后现代网络攻击技术不断演进,攻击手段日益多样化,如高级持续性威胁(APT)和勒索软件等新型攻击方式频繁出现。这些…...

基于EchoMimic加速版,可编辑标志点控制实现逼真音频驱动的肖像动画
EchoMimic 是蚂蚁集团终端技术部门开发的一项技术,旨在通过音频驱动生成逼真的肖像动画。对于那些初次接触这项技术的用户,本教程将带你逐步了解如何设置开发环境、获取项目代码、安装依赖,并最终成功运行示例生成自己的肖像动画。 文章目录 项目代码安装依赖业务拓展参数调…...

【STM32 HAL库】IIC通信与CubeMX配置
【STM32 HAL库】IIC通信与CubeMX配置 前言理论IIC总线时序图IIC写数据IIC读数据 轮询模式CubeMX配置应用示例AHT20初始化初始化函数读取说明读取函数 中断模式CubeMX配置状态机图fsm.caht20.c DMA模式CubeMX配置代码 前言 本文为笔者学习 IIC 通信的总结,基于keysk…...

iPhone 上丢失了重要的联系人?如何恢复已删除的 iPhone 联系人
丢失 iPhone 上的联系人可能会带来灾难。无论是一份很棒的新工作机会、潜在的恋爱对象,还是您一直想打电话的老朋友,如果您打开“联系人”应用时看到空白,这绝不是好事。不过,一切并非全无,仍然可以通过备份或专业软件…...

【有啥问啥】弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法
弱监督学习新突破:格灵深瞳多标签聚类辨别(Multi-Label Clustering and Discrimination, MLCD)方法 引言 在视觉大模型领域,如何有效利用海量无标签图像数据是一个亟待解决的问题。传统的深度学习模型依赖大量人工标注数据&…...
[强化你的LangChain工具创建技能:从基础到进阶]
强化你的LangChain工具创建技能:从基础到进阶 在现代AI开发中,为语言模型和智能代理提供工具是提升其功能的关键一步。本指南将带你深入了解如何在LangChain中创建工具,从简单的函数到复杂的可配置工具。 引言 在构建智能代理时࿰…...

4.提升客户服务体验:ChatGPT在客服中的应用(4/10)
本文大纲旨在指导撰写一篇全面探讨ChatGPT如何通过优化客户服务流程、提供实际应用案例和用户反馈,以提升客户服务体验的深入博客文章。 引言 在当今竞争激烈的商业环境中,客户服务已成为企业成功的关键因素。优质的客户服务不仅能够增强客户满意度和忠…...
Gradio导入AIGC大模型创建web端智能体聊天机器人,python(2)
Gradio导入AIGC大模型创建web端智能体聊天机器人,python(2) 选用这个大模型: https://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instructhttps://huggingface.co/HuggingFaceTB/SmolLM-1.7B-Instruct原因是该模型相对比较小&am…...
PEM 格式
文章目录 1.简介2.格式和内容3.常见用途4.标准化5.示例参考文献 1.简介 .pem 文件扩展名代表“Privacy Enhanced Mail”,但它被用于比电子邮件更广泛的上下文中,主要关联于加密、SSL/TLS 和证书管理。PEM 格式是一种用于存储和发送加密信息的标准&#…...
Android前台服务如何在后台启动activity?
本来最近在开发一个app保活另外一个app的功能,方案介绍如下: 应用A 启动一个前台服务保活自己应用A 用grpc连接应用B(服务端)是否存活如果发现B不存活,则在服务中拉起B 这次没有做好调研,直接开始了开发工作,等grpc都…...
c#visionpro开发 方法统计
toolblock开发 vpp第二种简单加载方式 public Cognex.VisionPro.ToolBlock.CogToolBlock ToolBlock1;//初始化后实例化一个方法 //窗口运行程序内部 ToolBlock1 (CogToolBlock)CogSerializer.LoadObjectFromFile(“tjjc.vpp”); MessageBox.Show(“算法加载成功”);//复制一个…...

dedecms——四种webshell姿势
姿势一:通过文件管理器上传WebShell 步骤一:访问目标靶场其思路为 dedecms 后台可以直接上传任意文件,可以通过文件管理器上传php文件获取webshell 步骤二:登陆到后台点击【核心】--》 【文件式管理器】--》 【文件上传】将准备好…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...