大模型入门3:理解LLAMA
- LLama在transformers库中的代码,以及各部分原理
- Llama3.1技术报告
- LLama 33b 微调尝试
Model
- a stack of DecoderBlocks(SelfAttention, FeedForward, and RMSNorm)
decoder block 整体结构:最大的区别在pre-norm
x -> norm(x) -> attention() -> residual connect -> norm() -> ffn -> residual connect
class DecoderBlock(nn.Module):def __init__(self, config):super().__init__()self.n_heads = config['n_heads']self.dim = config['embed_dim']self.head_dim = self.dim // self.n_headsself.attention = SelfAttention(config)self.feed_forward = FeedForward(config)# rms before attention blockself.attention_norm = RMSNorm(self.dim, eps=config['norm_eps'])# rms before feed forward blockself.ffn_norm = RMSNorm(self.dim, eps=config['norm_eps'])def forward(self, x, start_pos, freqs_complex):# (m, seq_len, dim)h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_complex)# (m, seq_len, dim)out = h + self.feed_forward.forward(self.ffn_norm(h))return outclass Transformer(nn.Module):def __init__(self, config):super().__init__()self.vocab_size = config['vocab_size']self.n_layers = config['n_layers']self.tok_embeddings = nn.Embedding(self.vocab_size, config['embed_dim'])self.head_dim = config['embed_dim'] // config['n_heads']self.layers = nn.ModuleList()for layer_id in range(config['n_layers']):self.layers.append(DecoderBlock(config))self.norm = RMSNorm(config['embed_dim'], eps=config['norm_eps'])self.output = nn.Linear(config['embed_dim'], self.vocab_size, bias=False)self.freqs_complex = precompute_theta_pos_frequencies(self.head_dim, config['max_seq_len'] * 2, device=(config['device']))def forward(self, tokens, start_pos):# (m, seq_len)batch_size, seq_len = tokens.shape# (m, seq_len) -> (m, seq_len, embed_dim)h = self.tok_embeddings(tokens)# (seq_len, (embed_dim/n_heads)/2]freqs_complex = self.freqs_complex[start_pos:start_pos + seq_len]# Consecutively apply all the encoder layers# (m, seq_len, dim)for layer in self.layers:h = layer(h, start_pos, freqs_complex)h = self.norm(h)# (m, seq_len, vocab_size)output = self.output(h).float()return outputmodel = Transformer(config).to(config['device'])
res = model.forward(test_set['input_ids'].to(config['device']), 0)
print(res.size())
RoPE
def precompute_theta_pos_frequencies(head_dim, seq_len, device, theta=10000.0):# theta_i = 10000^(-2(i-1)/dim) for i = [1, 2, ... dim/2]# (head_dim / 2)theta_numerator = torch.arange(0, head_dim, 2).float()theta = 1.0 / (theta ** (theta_numerator / head_dim)).to(device)# (seq_len)m = torch.arange(seq_len, device=device)# (seq_len, head_dim / 2)freqs = torch.outer(m, theta).float()# complex numbers in polar, c = R * exp(m * theta), where R = 1:# (seq_len, head_dim/2)freqs_complex = torch.polar(torch.ones_like(freqs), freqs)return freqs_complexdef apply_rotary_embeddings(x, freqs_complex, device):# last dimension pairs of two values represent real and imaginary# two consecutive values will become a single complex number# (m, seq_len, num_heads, head_dim/2, 2)x = x.float().reshape(*x.shape[:-1], -1, 2)# (m, seq_len, num_heads, head_dim/2)x_complex = torch.view_as_complex(x)# (seq_len, head_dim/2) --> (1, seq_len, 1, head_dim/2)freqs_complex = freqs_complex.unsqueeze(0).unsqueeze(2)# multiply each complex number# (m, seq_len, n_heads, head_dim/2)x_rotated = x_complex * freqs_complex# convert back to the real number# (m, seq_len, n_heads, head_dim/2, 2)x_out = torch.view_as_real(x_rotated)# (m, seq_len, n_heads, head_dim)x_out = x_out.reshape(*x.shape)return x_out.type_as(x).to(device)
RMS norm
class RMSNorm(nn.Module):def __init__(self, dim, eps=1e-6):super().__init__()self.eps = epsself.weight = nn.Parameter(torch.ones(dim))def _norm(self, x: torch.Tensor):# (m, seq_len, dim) * (m, seq_len, 1) = (m, seq_len, dim)# rsqrt: 1 / sqrt(x)return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)def forward(self, x: torch.Tensor):# weight is a gain parameter used to re-scale the standardized summed inputs# (dim) * (m, seq_len, dim) = (m, seq_Len, dim)return self.weight * self._norm(x.float()).type_as(x)
KV Caching
class KVCache:def __init__(self, max_batch_size, max_seq_len, n_kv_heads, head_dim, device):self.cache_k = torch.zeros((max_batch_size, max_seq_len, n_kv_heads, head_dim)).to(device)self.cache_v = torch.zeros((max_batch_size, max_seq_len, n_kv_heads, head_dim)).to(device)def update(self, batch_size, start_pos, xk, xv):self.cache_k[:batch_size, start_pos :start_pos + xk.size(1)] = xkself.cache_v[:batch_size, start_pos :start_pos + xv.size(1)] = xvdef get(self, batch_size, start_pos, seq_len):keys = self.cache_k[:batch_size, :start_pos + seq_len]values = self.cache_v[:batch_size, :start_pos + seq_len]return keys, values
Grouped Query Attention
def repeat_kv(x, n_rep):batch_size, seq_len, n_kv_heads, head_dim = x.shapeif n_rep == 1:return xelse:# (m, seq_len, n_kv_heads, 1, head_dim)# --> (m, seq_len, n_kv_heads, n_rep, head_dim)# --> (m, seq_len, n_kv_heads * n_rep, head_dim)return (x[:, :, :, None, :].expand(batch_size, seq_len, n_kv_heads, n_rep, head_dim).reshape(batch_size, seq_len, n_kv_heads * n_rep, head_dim))class SelfAttention(nn.Module):def __init__(self, config):super().__init__()self.n_heads = config['n_heads']self.n_kv_heads = config['n_kv_heads']self.dim = config['embed_dim']self.n_kv_heads = self.n_heads if self.n_kv_heads is None else self.n_kv_headsself.n_heads_q = self.n_headsself.n_rep = self.n_heads_q // self.n_kv_headsself.head_dim = self.dim // self.n_headsself.wq = nn.Linear(self.dim, self.n_heads * self.head_dim, bias=False)self.wk = nn.Linear(self.dim, self.n_kv_heads * self.head_dim, bias=False)self.wv = nn.Linear(self.dim, self.n_kv_heads * self.head_dim, bias=False)self.wo = nn.Linear(self.n_heads * self.head_dim, self.dim, bias=False)self.cache = KVCache(max_batch_size=config['max_batch_size'],max_seq_len=config['max_seq_len'],n_kv_heads=self.n_kv_heads,head_dim=self.head_dim,device=config['device'])def forward(self, x, start_pos, freqs_complex):# seq_len is always 1 during inferencebatch_size, seq_len, _ = x.shape# (m, seq_len, dim)xq = self.wq(x)# (m, seq_len, h_kv * head_dim)xk = self.wk(x)xv = self.wv(x)# (m, seq_len, n_heads, head_dim)xq = xq.view(batch_size, seq_len, self.n_heads_q, self.head_dim)# (m, seq_len, h_kv, head_dim)xk = xk.view(batch_size, seq_len, self.n_kv_heads, self.head_dim)xv = xv.view(batch_size, seq_len, self.n_kv_heads, self.head_dim)# (m, seq_len, num_head, head_dim)xq = apply_rotary_embeddings(xq, freqs_complex, device=x.device)# (m, seq_len, h_kv, head_dim)xk = apply_rotary_embeddings(xk, freqs_complex, device=x.device)# replace the entry in the cacheself.cache.update(batch_size, start_pos, xk, xv)# (m, seq_len, h_kv, head_dim)keys, values = self.cache.get(batch_size, start_pos, seq_len)# (m, seq_len, h_kv, head_dim) --> (m, seq_len, n_heads, head_dim)keys = repeat_kv(keys, self.n_rep)values = repeat_kv(values, self.n_rep)# (m, n_heads, seq_len, head_dim)# seq_len is 1 for xq during inferencexq = xq.transpose(1, 2)# (m, n_heads, seq_len, head_dim)keys = keys.transpose(1, 2)values = values.transpose(1, 2)# (m, n_heads, seq_len_q, head_dim) @ (m, n_heads, head_dim, seq_len) -> (m, n_heads, seq_len_q, seq_len)scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)# (m, n_heads, seq_len_q, seq_len)scores = F.softmax(scores.float(), dim=-1).type_as(xq)# (m, n_heads, seq_len_q, seq_len) @ (m, n_heads, seq_len, head_dim) -> (m, n_heads, seq_len_q, head_dim)output = torch.matmul(scores, values)# ((m, n_heads, seq_len_q, head_dim) -> (m, seq_len_q, dim)output = (output.transpose(1, 2).contiguous().view(batch_size, seq_len, -1))# (m, seq_len_q, dim)return self.wo(output)
SwiGlu
def sigmoid(x, beta=1):return 1 / (1 + torch.exp(-x * beta))def swiglu(x, beta=1):return x * sigmoid(x, beta)
class FeedForward(nn.Module):def __init__(self, config):super().__init__()hidden_dim = 4 * config['embed_dim']hidden_dim = int(2 * hidden_dim / 3)if config['ffn_dim_multiplier'] is not None:hidden_dim = int(config['ffn_dim_multiplier'] * hidden_dim)# Round the hidden_dim to the nearest multiple of the multiple_of parameterhidden_dim = config['multiple_of'] * ((hidden_dim + config['multiple_of'] - 1) // config['multiple_of'])self.w1 = nn.Linear(config['embed_dim'], hidden_dim, bias=False)self.w2 = nn.Linear(config['embed_dim'], hidden_dim, bias=False)self.w3 = nn.Linear(hidden_dim, config['embed_dim'], bias=False)def forward(self, x: torch.Tensor):# (m, seq_len, dim) --> (m, seq_len, hidden_dim)swish = swiglu(self.w1(x))# (m, seq_len, dim) --> (m, seq_len, hidden_dim)x_V = self.w2(x)# (m, seq_len, hidden_dim)x = swish * x_V# (m, seq_len, hidden_dim) --> (m, seq_len, dim)return self.w3(x)
小结
- padding 方式
reference
- llama tech report
- 源码:transformers
- 参数量计算: https://zhuanlan.zhihu.com/p/676113501
- 基于 MLX 的 LLAMA2-13B 的详细分析 - 亚东的文章 - 知乎 https://zhuanlan.zhihu.com/p/677125915
- 2023年你最喜欢的MLSys相关的工作是什么? - Lin Zhang的回答 - 知乎
- https://ai.plainenglish.io/understanding-llama2-kv-cache-grouped-query-attention-rotary-embedding-and-more-c17e5f49a6d7
- https://github.com/wdndev/llama3-from-scratch-zh/blob/main/llama3/model.py
相关文章:

大模型入门3:理解LLAMA
LLama在transformers库中的代码,以及各部分原理Llama3.1技术报告LLama 33b 微调尝试 Model a stack of DecoderBlocks(SelfAttention, FeedForward, and RMSNorm) decoder block 整体结构:最大的区别在pre-norm x -> norm(x) -> attention() -…...

React学习day07-ReactRouter-抽象路由模块、路由导航、路由导航传参、嵌套路由、默认二级路由的设置、两种路由模式
14、ReactRouter续 (2)抽象路由模块 1)新建page文件夹,存放组件 组件内容: 2)新建router文件夹,在其下创建实例 3)实例导入,使用 4)效果 (3&…...

Unity项目的脚本继承关系
1.Unity项目的脚本继承关系包括四层:自己的脚本、MonoBehaviour、Behaviour、Component、Object。 2.通过F12跳转可以查看各继承类中的方法和属性,如MonoBehaviour类中主要包括协程和相关API。 3.Component类中包含组件的只读属性、消息发送等API&…...

【自动驾驶】决策规划算法(一)决策规划仿真平台搭建 | Matlab + Prescan + Carsim 联合仿真基本操作
写在前面: 🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝 个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。 🔍 本文系 清流君 原创之作&…...

grep 命令:文本搜索
一、grep 命令简介 grep 命令用于在文件中搜索指定模式的文本,并显示匹配的行。 二、grep 命令参数 匹配规则:可以是 普通字符 串或 正则表达式。 grep [选项] [匹配规则] [指定目录]常用选项: -i, --ignore-case&#…...

python画图|中秋到了,尝试画个月亮(球体画法)
学习了一段时间的画图,已经掌握了一些3D图的画法,部分链接如下: python画图|极坐标下的3D surface-CSDN博客 python画图|3D参数化图形输出-CSDN博客 我们今天尝试一下月亮的画法。 【1】官网教程 首先还是到达官网教程学习: …...

【网络安全的神秘世界】攻防环境搭建及漏洞原理学习
🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 Kali安装docker 安装教程 PHP攻防环境搭建 中间件 介于应用系统和系统软件之间的软件。 能为多种应用程序合作互通、资源…...
pythonnet python图像 C# .NET图像 互转
C#是dotnet的代表虽然不是一个东西但是在这里代表同一件事,不要在意细节。 pythonnet是 python 和.net无缝连接的桥梁。那么python的图像是numpy表示,C#图象是Bitmap。 做图像想要python的便利又想要dotnet的强大就需要图像类型转换。 上程序。 1.Bi…...

spring security OAuth2 搭建资源服务器以及授权服务器/jdbc/jwt两种方案
一、认证服务器基于jdbc方式 如果不懂请移步上一篇文章:Spring security OAuth2 授权服务器搭建-CSDN博客 在上一篇文章中,TokenStore的默认实现为 InHenoryTokenStore 即内存存储,对于 CLient 信息,userDetaitsServce 接负责从存…...

计算机视觉—3d点云数据基础
点云数据 3d点云数据由来 3d点云 3D Point Cloud是一种用于表示三维空间中对象或场景的数据结构。在最基础的形式中,它是一个包含多个三维坐标点(X, Y, Z)的集合。这些点是通过对实际物体或场景表面进行离散采样而获得的,因此&a…...

Matlab simulink建模与仿真 第十八章(Stateflow状态机)
参考视频:Simulink/stateflow的入门培训_哔哩哔哩_bilibili 一、概述 Stateflow是集成于Simulink中的图形化设计与开发工具,主要用于针对控制系统中的复杂控制逻辑进行建模与仿真,或者说,Stateflow适用于针对事件响应系统进行建模…...

Linux系统终端中文件权限的10位字符是什么意思
Linux操作系统终端长格式显示的文件 在Linux操作系统终端中用文件长格式命令ls -l显示文件,如上图。第一列10个字符表示的含义如下: drwxrwxrwx 第一个字符是表示该文件的类型,如红色d表示该文件是一个目录,详细内容可以参考我…...
Qt QSerialPort串口编程
文章目录 Qt QSerialPort串口编程Qt Serial Port模块简述1.QSerialPortInfo类1.1示例用法 2.QSerialPort类2.1设置串口参数2.2打开串口2.3数据读写2.4关闭串口 3.串口编程基本流程3.1 简单实例 Qt QSerialPort串口编程 Qt 框架的Qt Serial Port 模块提供了访问串口的基本功能&…...

扫雷游戏及其中的知识点
大家好呀,今天我们给大家讲解扫雷游戏如何用C语言制作,以及制作扫雷游戏中的一些C语言知识。 想到扫雷游戏,大家有什么想法吗?大家还记得扫雷游戏是什么样子的吗?我在网上找了一些扫雷游戏的图片给大家提供参考: 如图所示,扫雷游戏需要的元素有以下几个: 1.进入游戏界面…...
【乐企-业务篇】开票前置校验服务-规则链服务接口实现(发票基础信息校验)
开票前置校验服务-规则链服务接口实现(发票基础信息校验) 代码 import liquibase.pro.packaged.L; import org.apache.commons.collections4.Collec...
【搜索算法】以扩召回为目标,item-tag不如query-tag能扩更多数量
首先ElasticSearch的召回结果已大量解决了精确召回的问题,扩召回主要就是增加一些推荐的搜索结果。 以item类目tag为例, 如果item类目体系一共20个类目,每个item都有一个类目,一共有10000个item,则平均每个类目tag下有…...

SpringBoot入门(黑马)
1. SpringBootWeb入门开发 需求:使用SpringBoot 开发一个web 应用,浏览器发起请求 /hello 后,给浏览器返回字符串"Hello World~"。 步骤: 1. 创建springBoot工程,并勾选web开发相关依赖。 2. 定义 HelloCo…...
Stream流操作
准备工作 准备 Gender 枚举类以及 Customer 类 enum Gender {MALE("男性"), FEMALE("女性");private String value;Gender() {}Gender(String value) {this.value value;}Overridepublic String toString() {return "Gender{" "value&qu…...

【Linux】查看操作系统开机时初始化的驱动模块列表的一个方法
这个方法是摸索出来的,也不一定对: 1、驱动层module_init(module_init_function)作为模块初始化,并且提供模块内部初始化的函数名; 2、找到所有驱动目录drivers下所有module_init(module_init_function),在内核6.9.0…...

快速入门Vue
Vue是什么 Vue.js(通常简称为Vue)是一个开源的JavaScript框架,用于构建用户界面和单页应用程序(SPA)。它由尤雨溪(Evan You)在2014年开发并发布。Vue的核心库只关注视图层,易于上手…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)
名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 上一篇:《数据结构第4章 数组和广义表》…...
boost::filesystem::path文件路径使用详解和示例
boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类,封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解,包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...