Pandas的入门操作-Series对象
Pandas的数据结构

Series对象
class pandas.Series(data=None, index=None)
data参数
含义:
data是Series构造函数中最主要的参数,它用来指定要存储在Series中的数据。数据类型:
data可以是多种数据类型,例如:
Python 列表(list)或元组(tuple),如pd.Series([1, 2, 3])或pd.Series((4, 5, 6))。
NumPy 数组,例如pd.Series(np.array([7, 8, 9]))。
标量值(单个数值、字符串等),如pd.Series(5, index=[0, 1, 2]),这将创建一个包含相同标量值的Series。
字典(dictionary),字典的键将作为Series的索引(如果未另外指定索引),字典的值作为Series的数据,例如pd.Series({'a': 10, 'b': 20})。
index参数
含义:index参数用于指定Series的索引,它定义了数据的标签。
数据类型:
可以是一个Index对象(这是pandas中专门用于表示索引的数据结构),例如pd.Index(['x', 'y', 'z'])可以作为索引传递给Series。
也可以是其他类似序列的数据类型,如列表、元组等,例如pd.Series([100, 200, 300], index=['m', 'n', 'o'])。
索引长度要求:index的长度必须与data的长度相同(当data是列表、数组等有序数据结构时)。如果data是标量,index的长度决定了Series的长度。例如,data为标量值5,index为[0, 1, 2],则会生成一个包含三个元素值都为5的Series。
通过numpy.ndarray数组来创建
# 0 创建 numpy.ndarray数组
import numpy as nparr = np.array([3, 6, 9])
arr
![]()
# 1 通过 numpy.ndarray数组 来创建 Series对象(默认 索引)
import pandas as pds1 = pd.Series(arr)
s1

# 2 通过 numpy.ndarray数组 来创建 Series对象(指定 索引 类型)
s2 = pd.Series(arr, index=['x', 'y', 'z'])
s2

通过list列表来创建
# 导包 pandas
import pandas as pd
# 创建含字符串和整数的 Series 对象,,自动生成索引
s1 = pd.Series(['张三', 13])
print(s1)
print("-" * 50)
print(type(s1))

# 创建含两个字符串的 Series,自动生成索引
s2 = pd.Series(['李四', '北京'])
print(s2)
print("-" * 50)
print(type(s2))

# 创建含两个整数的 Series,自动生成索引
s3 = pd.Series([18, 15000])
print(s3)
print("-" * 50)
print(type(s3))

# 创建含有姓名和城市的 Series,自定义索引
s4 = pd.Series(["王五", "郑州"], index=['姓名', '城市'])
print(s4)
print("-" * 50)
print(type(s4))

通过元组或字典创建 Series 对象
# 1 使用元组 创建 Series 对象
import pandas as pds1 = pd.Series(('张三', '李四', '王五'), index=['a', 'b', 'c'])
print(s1)
print("-" * 50)
print(type(s1))

# 2 使用字典 创建 Series 对象
dict1 = {"name" : "悟空","age" : 23,"skill" : "火眼金睛"
}s2 = pd.Series(dict1, index=['name', 'age'])
print(s2)
print("-" * 50)
print(type(s2))

Series对象常用属性和方法
常见属性
| 属性 | 说明 |
| loc | 使用索引值取子集 |
| iloc | 使用索引位置取子集 |
| dtype或dtypes | Series内容的类型 |
| T | Series的转置矩阵 |
| shape | 数据的维数 |
| size | Series中元素的数量 |
| values | Series的值 |
常见方法
| 方法 | 说明 |
| append | 连接两个或多个Series |
| corr | 计算与另一个Series的相关系数 |
| cov | 计算与另一个Series的协方差 |
| describe | 计算常见统计量 |
| drop_duplicates | 返回去重之后的Series |
| equals | 判断两个Series是否相同 |
| get_values | 获取Series的值,作用与values属性相同 |
| hist | 绘制直方图 |
| isin | Series中是否包含某些值 |
| min | 返回最小值 |
| max | 返回最大值 |
| mean | 返回算术平均值 |
| median | 返回中位数 |
| mode | 返回众数 |
| quantile | 返回指定位置的分位数 |
| replace | 用指定值代替Series中的值 |
| sample | 返回Series的随机采样值 |
| sort_values | 对值进行排序 |
| to_frame | 把Series转换为DataFrame |
| unique | 去重返回数组 |
| value_counts | 统计不同值数量 |
| keys | 获取索引值 |
| head | 查看前5个值 |
| tail | 查看后5个值 |
import pandas as pd# 创建s对象
s1 = pd.Series(data=[1, 2, 3, 4, 2, 3], index=['E', 'F', 'A', 'B', 'C', 'D'])
print(s1)
print('=================== 常用属性 ===================')
# 查看s对象值数量
print("size: ", s1.size)# 查看s对象维度, 返回一个单个元素的元组, 元素个数代表维度数, 元素值代表值数量
print("shape: ", s1.shape)# 查看s对象数据类型
print("dtype: ", s1.dtype)# 获取s对象的数据值, 返回numpy的ndarray数组类型
print('values: ', s1.values)# 获取s对象的索引
print('index: ', s1.index)

print('=================== 常用方法 ===================')
# 查看s对象值数量
print(s1.value_counts())# 查看s对象前5个值, n默认等于5
print(s1.head(3))# 查看s对象后5个值, n默认等于5
s1.tail(3)# 获取s对象的索引
print(s1.keys())# s对象转换成python列表
print(list(s1))# s对象转换成df对象
print(s1.to_frame())
print(type(s1.to_frame()))# s对象中数据的基础统计信息
print(s1.describe())
# print('------------------------------')
# s对象最大值、最小值、平均值、求和值...
print(s1.max())
print(s1.min())
print(s1.mean())
print(s1.sum())# s对象数据值去重, 返回s对象
print(s1.drop_duplicates())
print(type(s1.drop_duplicates()))
print('------------------')
# s对象数据值去重, 返回数组
print(s1.unique())
print(type(s1.unique()))# s对象数据值排序, 默认升序
print(s1.sort_values())
# print('----------------------------------')
print(s1.sort_values(ascending=False))# s对象索引值排序, 默认升序
print(s1.sort_index())
# print('----------------------------------')
print(s1.sort_index(ascending=False))# s对象不同值的数量, 类似于分组计数操作
s1.value_counts()
实例
import pandas as pd
# 1 加载并观察数据集df = pd.read_csv('../data/a_scientists.csv')
df

# 2 获取年龄列
ages = df['Age']
ages# 3 求平均年龄
ages.mean()#%%
# 4 求高于平均年龄 组成 布尔结果
print(ages > ages.mean())
print('--------------------------------')
print(type(ages > ages.mean()))
print('--------------------------------')
print(list(ages > ages.mean()))# 5 求高于平均年龄 组成 年龄列
print(ages[ages > ages.mean()])
print('------------------------')
print(ages[list(ages > ages.mean())])
求年龄大于平均值
ages > ages.mean()

df[ages > ages.mean()]

相关文章:
Pandas的入门操作-Series对象
Pandas的数据结构 Series对象 class pandas.Series(dataNone, indexNone) data参数 含义:data是Series构造函数中最主要的参数,它用来指定要存储在Series中的数据。 数据类型:data可以是多种数据类型,例如: Python 列…...
自然语言处理系列六十八》搜索引擎项目实战》搜索引擎系统架构设计
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十八搜索引擎项目实战》搜索引擎系统架构设计…...
H5依赖安装
依赖安装 git和sourceTree编辑器使用vscode下载nvm 和nodejs git和sourceTree 使用 ssh-keygen -t rsa 进行密钥获取 git下载地址:https://git-scm.com/ sourceTree下载地址:https://www.sourcetreeapp.com/ 编辑器使用vscode 最新版网址:…...
MatchRFG:引领MemeCoin潮流,探索无限增长潜力
Meme币无疑是本轮牛市最热闹的赛道,而围绕Meme币的讨论话题基本都集中在价格炒作上。似乎人们习惯性地认为,Meme币的创造和成长往往与真正的价值无关。热炒过后,价格能否通过共识转化为价值,也正是许多Meme币在热潮冷却后的主要成…...
2024/9/18 模型的存储与读取
一、模型的存储与读取 主要涉及到torch.save和torch.load函数 新建两个python文件: 1.在model_save文件中保存模型(方式一)和模型参数(方式二) 2.在model_load文件中读取模型(方式一)和模型参数并装载模型(方式二)...
在 fnOS上安装 KVM 虚拟化,并使用 Cockpit 网页管理虚拟机
在fnOS系统上安装 KVM 虚拟化,并使用 Cockpit 进行网页管理,可以按照以下步骤进行: 1. 安装 KVM虚拟化组件 首先,更新软件列表和系统包: sudo apt update && sudo apt upgrade -y 安装 KVM 及相关工具软件&…...
VUE实现刻度尺进度条
一、如下图所示效果: 运行后入下图所示效果: 实现原理是用div画图并动态改变进度, 二、div源码 <div style"width: 100%;"><div class"sdg_title" style"height: 35px;"><!--对话组[{{ dialo…...
ZYNQ FPGA自学笔记~点亮LED
一 ZYNQ FPGA简介 ZYNQ FPGA主要特点是包含了完整的ARM处理系统,内部包含了内存控制器和大量的外设,且可独立于可编程逻辑单元,下图中的ARM内核为 ARM Cortex™-A9,ZYNQ FPGA包含两大功能块,处理系统Processing System…...
攻击者如何在日常网络资源中隐藏恶意软件
近二十年来,安全 Web 网关 (SWG) 一直在监控网络流量,以检测恶意软件、阻止恶意网站并保护企业免受基于 Web 的威胁。 然而,攻击者已经找到了许多绕过这些防御措施的方法,SquareX的安全研究人员对此进行了记录。 最危险的策略之…...
《深度学习》深度学习 框架、流程解析、动态展示及推导
目录 一、深度学习 1、什么是深度学习 2、特点 3、神经网络构造 1)单层神经元 • 推导 • 示例 2)多层神经网络 3)小结 4、感知器 神经网络的本质 5、多层感知器 6、动态图像示例 1)一个神经元 相当于下列状态&…...
“中秋快乐”文字横幅的MATLAB代码生成
中秋快乐呀朋友们!!! 给大家带来一个好玩的代码,能够生成“中秋快乐”的横幅文字,比较简单,当然你也可以根据自己的需求去更改文字和背景,废话不多说,直接展示。 文字会一直闪烁&…...
【Node.js】RabbitMQ 延时消息
概述 在 RabbitMQ 中实现延迟消息通常需要借助插件(如 RabbitMQ 延迟队列插件),因为 RabbitMQ 本身不原生支持延迟消息。 延迟消息的一个典型场景是,当消息发布到队列后,等待一段时间再由消费者消费。这可以通过配置…...
前后端分离Vue美容店会员信息管理系统o7grs
目录 技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取 技术栈介绍 本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合…...
初学Linux(学习笔记)
初学Linux(学习笔记) 前言 本文跳过了Linux前期的环境准备,直接从知识点和指令开始。 知识点: 1.目录文件夹(Windows) 2.文件内容属性 3.在Windows当中区分文件类型是通过后缀,而Linux是通过…...
新增的标准流程
同样的新增的话我们也是分成两种, 共同点: 返回值都是只需要一个Result.success就可以了 接受前端的格式都是json格式,所以需要requestbody 1.不需要连接其他表的 传统方法,在service层把各种数据拼接给new出来的employee从…...
WebSocket 协议
原文地址:xupengboo WebSocket WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。 在 WebSocket API 中,浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。…...
[mysql]mysql排序和分页
#排序和分页本身是两块内容,因为都比较简单,我们就把它分到通一个内容里. #1排序: SELECT * FROM employees #我们会发现,我们没有做排序操作,但是最后出来的107条结果还是会按顺序发出,而且是每次都一样.这我们就有一个疑惑了,现在我们的数据库是根据什么来排序的,在我们没有进…...
开源 AI 智能名片 S2B2C 商城小程序中的全渠道供应策略
摘要:本文深入探讨在开源 AI 智能名片 S2B2C 商城小程序的情境下,全渠道供应的运行机制。阐述各环节企业相互配合的重要性,重点分析零售企业在其中的关键作用,包括协调工作、信息传递、需求把握等方面,旨在实现高效的全…...
一次渲染十万条数据:前端技术优化(上)
今天看了一篇文章,写的是一次性渲染十万条数据的方法,本文内容是对这篇文章的学习总结,以及知识点补充。 在现代Web应用中,前端经常需要处理大量的数据展示,例如用户评论、商品列表等。直接渲染大量数据会导致浏览器性…...
springboot实训学习笔记(5)(用户登录接口的主逻辑)
接着上篇博客学习。上篇博客是已经基本完成用户模块的注册接口的开发以及注册时的参数合法性校验。具体往回看了解的链接如下。 springboot实训学习笔记(4)(Spring Validation参数校验框架、全局异常处理器)-CSDN博客文章浏览阅读576次,点赞7…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
