当前位置: 首页 > news >正文

python 实现average median平均中位数算法

average median平均中位数算法介绍

平均(Mean)和中位数(Median)是统计学中常用的两个概念,用于描述一组数据的中心趋势,但它们并不是算法,而是数据处理的结果。不过,我可以解释如何计算它们。

平均数(Mean)

平均数是所有数值的总和除以数值的数量。对于一组数据 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn,其平均数的计算公式为:

M e a n = x 1 + x 2 + ⋯ + x n n Mean=\frac{x_1+x_2+⋯+x_n}{n} Mean=nx1+x2++xn

其中 n 是数据的数量。

中位数(Median)

中位数是将一组数据从小到大(或从大到小)排列后,位于中间位置的数。如果数据量是奇数,则中位数是正中间的数;如果数据量是偶数,则中位数是中间两个数的平均值。

对于一组数据 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn(已排序),中位数的计算方法如下:

如果 𝑛是奇数,则中位数是 x n + 1 2 x_{\frac{n+1}{2}} x2n+1

如果 𝑛是偶数,则中位数是 x n 2 + x n 2 + 1 2 \frac{x_{\frac{n}{2}}+x_{\frac{n}{2}+1}}{2} 2x2n+x2n+1
算法实现

虽然计算平均数和中位数本身不是复杂的算法,但我们可以编写简单的程序来实现它们。以下是用Python语言实现的示例:

def mean(data):return sum(data) / len(data)def median(data):sorted_data = sorted(data)n = len(sorted_data)if n % 2 == 0:return (sorted_data[n//2 - 1] + sorted_data[n//2]) / 2else:return sorted_data[n//2]# 示例数据
data = [3, 1, 4, 1, 5, 9, 2, 6]
print("Mean:", mean(data))
print("Median:", median(data))

这段代码首先定义了两个函数,mean 用于计算平均数,median 用于计算中位数。然后,它使用一组示例数据来调用这些函数,并打印结果。

average median平均中位数算法python实现样例

以下是使用Python编写的计算平均值和中位数的算法:

  1. 计算平均值:
def average(numbers):total = sum(numbers)average = total / len(numbers)return average

这个函数使用 sum() 函数计算列表中所有元素的总和,然后将其除以列表的长度,得到平均值。

  1. 计算中位数:
def median(numbers):sorted_numbers = sorted(numbers)n = len(sorted_numbers)if n % 2 == 0:median = (sorted_numbers[n//2-1] + sorted_numbers[n//2]) / 2else:median = sorted_numbers[n//2]return median

这个函数首先使用 sorted() 函数对列表进行排序,然后根据列表的长度判断中位数是单个值还是两个值的平均值。如果列表长度是偶数,则通过索引取出中间两个数,将它们相加再除以2得到中位数;如果列表长度是奇数,则直接取出中间的数作为中位数。

你可以将上述代码复制到Python编辑器中,并使用自己的列表数据进行测试。例如:

numbers = [1, 2, 3, 4, 5]
print(average(numbers))  # 输出:3.0
print(median(numbers))  # 输出:3

希望对你有帮助!

相关文章:

python 实现average median平均中位数算法

average median平均中位数算法介绍 平均(Mean)和中位数(Median)是统计学中常用的两个概念,用于描述一组数据的中心趋势,但它们并不是算法,而是数据处理的结果。不过,我可以解释如何…...

HTML概述

1. HTML概述 1.1 HTML定义 HTML超文本标记语言&#xff0c;其中超文本是链接&#xff0c;标记也叫标签&#xff08;即带尖括号的文本&#xff09;。 1.2 HTML基本骨架 HTML基本骨架是网页模板。 <html><head><title>网页的标题</title></head&…...

【FFT】信号处理——快速傅里叶变换【通俗易懂】

快速傅里叶变换&#xff08;Fast Fourier Transform, FFT&#xff09;是一种用于将信号从时间域转换到频率域的算法。 傅里叶变换的核心思想是&#xff1a;任何周期性信号都可以分解成多个不同频率的正弦波或余弦波的叠加。 简单来说&#xff0c;FFT可以帮助我们理解一个信号…...

电脑升级WIN11之后需要注意哪些东西

1.记事本&#xff0c;在前单位时&#xff0c;电脑升级后&#xff0c;记事本会需要手动更新&#xff0c;或手动安装 2.任务栏&#xff0c;WIN11默认任务栏在中间位置&#xff0c;想要调成WIN10一样的位置&#xff0c;分享两个方法 拖拽法&#xff08;适用于Windows 11 2022年1…...

GEE 教程:利用sentinel-5p数据进行长时序CO一氧化碳的监测分析并结合夜间灯光数据分析

目录 简介 数据 哨兵5号 NOAA/VIIRS/DNB/MONTHLY_V1/VCMCF 函数 ui.Chart.image.series(imageCollection, region, reducer, scale, xProperty) Arguments: Returns: ui.Chart 代码 结果 简介 利用sentinel-5p数据进行长时序CO一氧化碳的监测分析并结合夜间灯光数据…...

【教程】鸿蒙ARKTS 打造数据驾驶舱---前序

鸿蒙ARKTS 打造数据驾驶舱 ​ 前面2章我介绍了如何通过定义View绘制箭头以及圆形进度&#xff0c;初步了解了鸿蒙如何进行自定义View。接下来我将通过我最近在带的一个VUE的项目&#xff0c;简单实现了几个鸿蒙原生页面。帮助大家快速上手纯血鸿蒙开发. 本项目基于Api11Stage模…...

Html css样式总结

1.Html css样式总结 CSS 定义 中文名称&#xff1a;层叠样式表 。 英文全称&#xff1a;Cascading Style Sheets &#xff0c;简称CSS。在网页制作时采用CSS技术&#xff0c;可以有效地对页面的布局、字体、颜色、背景和其它效果实现更加精确的控制。 &#xff08;1&#xff09…...

决策树基础概论

1. 概述 在机器学习领域&#xff0c;决策树&#xff08;Decision Tree&#xff09; 是一种高度直观且广泛应用的算法。它通过一系列简单的是/否问题&#xff0c;将复杂的决策过程分解为一棵树状结构&#xff0c;使得分类或回归问题的解决过程直观明了。决策树的最大特点在于可…...

Spring Boot集成Akka Cluster快速入门Demo

1.什么是Akka Cluster&#xff1f; Akka Cluster将多个JVM连接整合在一起&#xff0c;实现消息地址的透明化和统一化使用管理&#xff0c;集成一体化的消息驱动系统。最终目的是将一个大型程序分割成若干子程序&#xff0c;部署到很多JVM上去实现程序的分布式并行运算&#xf…...

django学习入门系列之第十点《A 案例: 员工管理系统10》

文章目录 12 管理员操作12.4 密码加密12.5 获取对象&#xff08;防止id错误--编辑界面等&#xff09;12.6 编辑管理员12.7 重置密码 往期回顾 12 管理员操作 12.4 密码加密 密码不应该以明文的方式直接存储到数据库&#xff0c;应该加密才放进去 定义一个md5的方法&#xff…...

Unity实战案例全解析:PVZ 植物卡片状态分析

Siki学院2023的PVZ免费了&#xff0c;学一下也坏 卡片状态 卡片可以有三种状态&#xff1a; 1.阳光足够&#xff0c;&#xff08;且cd好了可以种植&#xff09; 2.阳光不够&#xff0c;&#xff08;cd&#xff1f;好了&#xff1a;没好 &#xff08;三目运算符&#xff09;&…...

判断变量是否为有限数字(非无穷大或NaN)math.isfinite() 判断变量是否为无穷大(正无穷大或负无穷大)math.isinf()

【小白从小学Python、C、Java】 【考研初试复试毕业设计】 【Python基础AI数据分析】 判断变量是否为有限数字&#xff08;非无穷大或NaN&#xff09; math.isfinite() 判断变量是否为无穷大&#xff08;正无穷大或负无穷大&#xff09; math.isinf() 请问关于以下代码表述错误…...

idea使用阿里云服务器运行jar包

说明&#xff1a;因为我用的阿里云服务器不是自己的&#xff0c;所以一些具体的操作可能不太全面。看到一个很完整的教程&#xff0c;供参考。 0. 打包项目 这里使用的是maven打包。 在pom.xml中添加以下模块。 <build><plugins><plugin><groupId>org…...

解决nginx代理SSE接口的响应没有流式返回

目录 现象原来的nginx配置解决 现象 前后端分离的项目&#xff0c;前端访问被nginx反向代理的后端SSE接口&#xff0c;预期是流式返回&#xff0c;但经常是很久不响应&#xff0c;一响应全部结果一下子都返回了。查看后端项目的日志&#xff0c;响应其实是流式产生的。推测是n…...

11 - TCPClient实验

在上一个章节的UDP通信测试中&#xff0c;尽管通信的实现过程相对简洁&#xff0c;但出现了通信数据丢包的问题。因此&#xff0c;本章节将基于之前建立的WIFI网络连接&#xff0c;构建一个基础的TCPClient连接机制。我们利用网络调试助手工具来发送数据&#xff0c;测试网络通…...

React框架搭建,看这一篇就够了,看完你会感谢我

传统搭建框架的方式 在2024年以前&#xff0c;我们构建框架基本上采用官方脚手架&#xff0c;但是官方脚手架其实大概率都不符合我们的项目要求&#xff0c;搭建完了以后往往需要再继续集成一些第三方的包。这时候又会碰到一些版本冲突&#xff0c;配置教程等&#xff0c;往往…...

【rust】rust条件编译

在c语言中&#xff0c;条件编译是一个非常好用的功能&#xff0c;那么rust中如何实现条件编译呢? rust的条件编译需要两个部分&#xff0c;一个是fratures&#xff0c;另一个是cfg。Cargo feature是一个非常强大的功能&#xff0c;可以提供条件编译和可选依赖项的高级特性&…...

一键文本提示实现图像对象高质量剪切与透明背景生成

按照提示词裁剪 按照边框裁剪 要实现您描述的功能,即通过一个文本提示就能自动从图片中切割出指定的对象并生成一个带有透明背景的新图像,这需要一个结合了先进的计算机视觉技术和自然语言处理能力的系统。这样的系统可以理解输入的文本指令,并将其转化为对图像内容的精确分…...

游戏客服精华回复快捷语大全

以黑神话悟空为代表的国内的游戏行业&#xff0c;最近发展非常迅猛&#xff0c;大量游戏玩家需要足够的游戏客服支持&#xff0c;这里整理了游戏客服精华回复快捷语&#xff0c;涵盖了接待客户&#xff0c;游戏级数&#xff0c;游戏外挂&#xff0c;游戏要求&#xff0c;游戏特…...

国内版Microsoft Teams 基础版部署方案

目录 前言Microsoft Teams简介部署前的准备 环境需求账户和许可网络要求部署步骤 初步配置和设置安装Microsoft Teams客户端Teams管理中心配置用户管理 用户添加与分配角色与权限管理通讯与协作 团队和频道管理即时消息和会议功能文件共享与协作安全性与合规性 数据保护措施合规…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...