【Finetune】(一)、transformers之BitFit微调
文章目录
- 0、参数微调简介
- 1、常见的微调方法
- 2、代码实战
- 2.1、导包
- 2.2、加载数据集
- 2.3、数据集处理
- 2.4、创建模型
- 2.5、BitFit微调*
- 2.6、配置模型参数
- 2.7、创建训练器
- 2.8、模型训练
- 2.9、模型推理
0、参数微调简介
参数微调方法是仅对模型的一小部分的参数(这一小部分可能是模型自身的,也可能是外部引入的)进行训练,便可以为模型带来显著的性能变化,在一些场景下甚至不输于全量微调。
由于训练一小部分参数,极大程度降低了训练大模型的算力需求,不需要多机多卡,单卡就可以完成对一些大模型的训练。不仅如此,少量的训练参数,对存储的要求同样降低很多,大多数的参数微调方法只需要保存训练部分的参数,与动辄几十GB的原始大模型相比,几乎可以忽略。
1、常见的微调方法
常见的微调方法如图所示:

Lialin, Vladislav, Vijeta Deshpande, and Anna Rumshisky. “Scaling down to scale up: A guide to parameter-efficient fine-tuning.” arXiv preprint arXiv:2303.15647 (2023).
2、代码实战
- 模型——bloom-389m-zh
- 数据集——alpaca_data_zh
2.1、导包
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
2.2、加载数据集
ds = Dataset.load_from_disk("./alpaca_data_zh/")
2.3、数据集处理
tokenizer = AutoTokenizer.from_pretrained("../Model/bloom-389m-zh")
tokenizer
def process_func(example):MAX_LENGTH = 256input_ids, attention_mask, labels = [], [], []instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")response = tokenizer(example["output"] + tokenizer.eos_token)input_ids = instruction["input_ids"] + response["input_ids"]attention_mask = instruction["attention_mask"] + response["attention_mask"]labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]if len(input_ids) > MAX_LENGTH:input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}
tokenized_ds = ds.map(process_func, remove_columns=ds.column_names)
tokenized_ds
2.4、创建模型
model = AutoModelForCausalLM.from_pretrained("../Model/bloom-389m-zh",low_cpu_mem_usage=True)
2.5、BitFit微调*
#选择模型参数里面的所有bias部分
#非bias部分冻结
num_param = 0
for name,param in model.named_parameters():if 'bias' not in name:param.requires_grad = Falseelse:num_param+=param.numel()
num_param
2.6、配置模型参数
args = TrainingArguments(output_dir="./chatbot",per_device_train_batch_size=1,gradient_accumulation_steps=4,logging_steps=10,num_train_epochs=1
)
2.7、创建训练器
trainer = Trainer(args=args,model=model,train_dataset=tokenized_ds,data_collator=DataCollatorForSeq2Seq(tokenizer, padding=True, )
)
2.8、模型训练
trainer.train()
2.9、模型推理
from transformers import pipelinepipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
ipt = "Human: {}\n{}".format("考试有哪些技巧?", "").strip() + "\n\nAssistant: "
pipe(ipt, max_length=256, do_sample=True, temperature=0.5)
相关文章:
【Finetune】(一)、transformers之BitFit微调
文章目录 0、参数微调简介1、常见的微调方法2、代码实战2.1、导包2.2、加载数据集2.3、数据集处理2.4、创建模型2.5、BitFit微调*2.6、配置模型参数2.7、创建训练器2.8、模型训练2.9、模型推理 0、参数微调简介 参数微调方法是仅对模型的一小部分的参数(这一小部分可…...
ubuntu24系统普通用户免密切换到root用户
普通用户登录系统后需要切换到root用户,这边需要密码,现在不想让用户知道密码是多少。 sudo: 1 incorrect password attempt $ su - Password: root-security-cm5:~#开始配置普通用户免密切换到root用户,编辑配置文件 /etc/sudoers 最后增加…...
如何应对pcdn技术中遇到的网络安全问题?
在应对网络安全问题时,需要采取一系列的操作措施,以确保网络环境的稳定性和数据的安全性。以下是一些建议: 选择可靠的PCDN提供商:与有良好安全记录的PCDN提供商合作,确保提供商具备专业的安全团队,能够提…...
【WRF工具】WRF Domain Wizard第一期:软件下载及安装
【WRF工具介绍】WRF Domain Wizard下载及安装 1 WRF Domain Wizard 的主要功能2 使用 WRF Domain Wizard 的步骤2.1 安装 WRF Domain Wizard:2.2 启动 WRF Domain Wizard:2.3 定义计算域:2.4 生成配置文件:2.5 运行 WPS 和 WRF&am…...
使用CUBE_MX实现STM32 DMA功能 (储存器发送数据到外设串口)+(外设串口将数据写入到存储器)
目录 一、配置串口打印(参考串口打印的文章) 二、CUBE_MX配置 三、KEIL5配置 1.打开dma.c文件(默认初始化DMA中断函数) 2.打开usart.c文件 3.打开main.c文件(储存器发送数据到外设串口) 4.打开main.c…...
【JavaScript】数据结构之树
什么是树形结构? 一种分层数据的抽象模型,用来分层级关系的。虚拟dom它所组织的那个数据原理就是树形结构 深度优先搜索(遍历)- 递归 从根出发,尽可能深的搜索树的节点技巧 访问根节点对根节点的children挨个进行深…...
【AI大模型】LLM主流开源大模型介绍
目录 🍔 LLM主流大模型类别 🍔 ChatGLM-6B模型 2.1 训练目标 2.2 模型结构 2.3 模型配置(6B) 2.4 硬件要求 2.5 模型特点 2.6 衍生应用 🍔 LLaMA模型 3.1 训练目标 3.2 模型结构 3.3 模型配置(7B) 3.4 硬件…...
Uniapp的alertDialog返回值+async/await处理确定/取消问题
今天在使用uniui的alertDialog时,想添加一个确定/取消的警告框时 发现alertDialog和下面的处理同步进行了,没有等待alaertDialog处理完才进行 查询后发现问题在于 await 关键字虽然被用来等待 alertDialog.value.open() 的完成,但是 alertDi…...
Spring Boot中的响应与分层解耦架构
Spring Boot中的响应与分层解耦架构 在Spring Boot框架中,响应与分层解耦架构是两个核心概念,它们共同促进了应用程序的高效性、可维护性和可扩展性。下面将详细探讨这两个方面,包括Spring Boot的响应机制、分层解耦的三层架构以及它们在实际…...
基于python+django+vue的图书管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于pythondjangovueMySQL的图…...
Oracle数据库安装与SQL*Plus使用
一、实验过程 1、安装完数据库服务器程序后,查看系统服务启动状况并截图。 2、启动 SOL Plus工具,分别以SYS用户和 SYSTEM用户登录数据库,并解锁scott用户,用scott用户登录。每次登录完成后用show user命令查看当前用户,并截图。…...
C#通过MXComponent与三菱PLC通信
1,MXComponent安装包与手册。 https://download.csdn.net/download/lingxiao16888/89767137 2,使用管理员权限打开MXComponent,并进行配置。 3,引用相应的类库。 //通信类库 ActUtlTypeLib.dll或者ActProgType.dll 注明&#x…...
深度学习实战91-利用时空特征融合模型的城市网络流量预测分析与应用
大家好,我是微学AI,今天给大家介绍一下深度学习实战91-利用时空特征融合模型的城市网络流量预测分析与应用。本文围绕基于时空特征融合的城市网络流量预测展开。介绍了城市网络流量预测的重要性和现实需求,以及时空特征融合模型,包括其原理和优势。然后展示所使用的数据集,…...
GlusterFS 分布式文件系统
一、GlusterFS 概述 1.1 什么是GlusterFS GlusterFS 是一个开源的分布式文件系统,它可以将多个存储服务器结合在一起,创建一个大的存储池,供客户端使用。它不需要单独的元数据服务器,这样可以提高系统的性能和可靠性。由于没有…...
论文学习笔记6:Relation-Aware Heterogeneous Graph Neural Network for Fraud Detection
文章目录 Abstract一、Introduction二、Preliminaries2.1Problem Definition2.2Related Works 三、Proposed Method3.1Model Architecture3.2Computation Graph Pre-process3.3Heterogeneous Propagation Abstract 欺诈检测是金融和社交媒体领域的一项重要数据挖掘任务。传统的…...
无人机光电吊舱的技术!!
1. 成像技术 可见光成像:通过高分辨率相机捕捉地面或空中目标的清晰图像,提供直观的视觉信息。 红外热成像:利用红外辐射探测目标的温度分布,实现夜间或恶劣天气条件下的隐蔽目标发现。 多光谱成像:通过不同波段的光…...
C++——判断year是不是闰年。
没注释的源代码 #include <iostream> using namespace std; void Y(int y); int main() { int year; cout<<"请输入一个年份:"; cin>>year; Y(year); return 0; } void Y(int y) { if(((y%40)&&(y%100!0))||(y%…...
31. 三维向量Vector3与模型位置
点模型Points、线模型Line、网格网格模型Mesh等模型对象的父类都是Object3D (opens new window),如果想对这些模型进行旋转、缩放、平移等操作,如何实现,可以查询Threejs文档Object3D (opens new window)对相关属性和方法的介绍。 三维向量Ve…...
C# Action和delegate区别及示例代码
Action和delegate类似但没有返回值 Action和delegate在C#编程语言中有明显的区别,主要体现在它们的定义、用途和特性上。 1. 定义 Delegate:Delegate是C#中用于定义方法签名的类型,它允许将方法作为参数传递,或者将方法赋值给变…...
深度优先搜索: 探索图结构的括号化旅程
深度优先搜索: 探索图结构的括号化旅程 图的括号化结构示例图深度优先搜索的伪代码C语言实现解释运行结果总结在解决图相关问题时,深度优先搜索(DFS)是一种非常有用的算法。DFS 通过递归或使用栈的方式遍历图的节点,尽可能深地搜索每一个分支,然后回溯以搜索其他未访问的节…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...
