【Finetune】(一)、transformers之BitFit微调
文章目录
- 0、参数微调简介
- 1、常见的微调方法
- 2、代码实战
- 2.1、导包
- 2.2、加载数据集
- 2.3、数据集处理
- 2.4、创建模型
- 2.5、BitFit微调*
- 2.6、配置模型参数
- 2.7、创建训练器
- 2.8、模型训练
- 2.9、模型推理
0、参数微调简介
参数微调方法是仅对模型的一小部分的参数(这一小部分可能是模型自身的,也可能是外部引入的)进行训练,便可以为模型带来显著的性能变化,在一些场景下甚至不输于全量微调。
由于训练一小部分参数,极大程度降低了训练大模型的算力需求,不需要多机多卡,单卡就可以完成对一些大模型的训练。不仅如此,少量的训练参数,对存储的要求同样降低很多,大多数的参数微调方法只需要保存训练部分的参数,与动辄几十GB的原始大模型相比,几乎可以忽略。
1、常见的微调方法
常见的微调方法如图所示:
Lialin, Vladislav, Vijeta Deshpande, and Anna Rumshisky. “Scaling down to scale up: A guide to parameter-efficient fine-tuning.” arXiv preprint arXiv:2303.15647 (2023).
2、代码实战
- 模型——bloom-389m-zh
- 数据集——alpaca_data_zh
2.1、导包
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer
2.2、加载数据集
ds = Dataset.load_from_disk("./alpaca_data_zh/")
2.3、数据集处理
tokenizer = AutoTokenizer.from_pretrained("../Model/bloom-389m-zh")
tokenizer
def process_func(example):MAX_LENGTH = 256input_ids, attention_mask, labels = [], [], []instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")response = tokenizer(example["output"] + tokenizer.eos_token)input_ids = instruction["input_ids"] + response["input_ids"]attention_mask = instruction["attention_mask"] + response["attention_mask"]labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]if len(input_ids) > MAX_LENGTH:input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}
tokenized_ds = ds.map(process_func, remove_columns=ds.column_names)
tokenized_ds
2.4、创建模型
model = AutoModelForCausalLM.from_pretrained("../Model/bloom-389m-zh",low_cpu_mem_usage=True)
2.5、BitFit微调*
#选择模型参数里面的所有bias部分
#非bias部分冻结
num_param = 0
for name,param in model.named_parameters():if 'bias' not in name:param.requires_grad = Falseelse:num_param+=param.numel()
num_param
2.6、配置模型参数
args = TrainingArguments(output_dir="./chatbot",per_device_train_batch_size=1,gradient_accumulation_steps=4,logging_steps=10,num_train_epochs=1
)
2.7、创建训练器
trainer = Trainer(args=args,model=model,train_dataset=tokenized_ds,data_collator=DataCollatorForSeq2Seq(tokenizer, padding=True, )
)
2.8、模型训练
trainer.train()
2.9、模型推理
from transformers import pipelinepipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
ipt = "Human: {}\n{}".format("考试有哪些技巧?", "").strip() + "\n\nAssistant: "
pipe(ipt, max_length=256, do_sample=True, temperature=0.5)
相关文章:

【Finetune】(一)、transformers之BitFit微调
文章目录 0、参数微调简介1、常见的微调方法2、代码实战2.1、导包2.2、加载数据集2.3、数据集处理2.4、创建模型2.5、BitFit微调*2.6、配置模型参数2.7、创建训练器2.8、模型训练2.9、模型推理 0、参数微调简介 参数微调方法是仅对模型的一小部分的参数(这一小部分可…...
ubuntu24系统普通用户免密切换到root用户
普通用户登录系统后需要切换到root用户,这边需要密码,现在不想让用户知道密码是多少。 sudo: 1 incorrect password attempt $ su - Password: root-security-cm5:~#开始配置普通用户免密切换到root用户,编辑配置文件 /etc/sudoers 最后增加…...
如何应对pcdn技术中遇到的网络安全问题?
在应对网络安全问题时,需要采取一系列的操作措施,以确保网络环境的稳定性和数据的安全性。以下是一些建议: 选择可靠的PCDN提供商:与有良好安全记录的PCDN提供商合作,确保提供商具备专业的安全团队,能够提…...

【WRF工具】WRF Domain Wizard第一期:软件下载及安装
【WRF工具介绍】WRF Domain Wizard下载及安装 1 WRF Domain Wizard 的主要功能2 使用 WRF Domain Wizard 的步骤2.1 安装 WRF Domain Wizard:2.2 启动 WRF Domain Wizard:2.3 定义计算域:2.4 生成配置文件:2.5 运行 WPS 和 WRF&am…...

使用CUBE_MX实现STM32 DMA功能 (储存器发送数据到外设串口)+(外设串口将数据写入到存储器)
目录 一、配置串口打印(参考串口打印的文章) 二、CUBE_MX配置 三、KEIL5配置 1.打开dma.c文件(默认初始化DMA中断函数) 2.打开usart.c文件 3.打开main.c文件(储存器发送数据到外设串口) 4.打开main.c…...

【JavaScript】数据结构之树
什么是树形结构? 一种分层数据的抽象模型,用来分层级关系的。虚拟dom它所组织的那个数据原理就是树形结构 深度优先搜索(遍历)- 递归 从根出发,尽可能深的搜索树的节点技巧 访问根节点对根节点的children挨个进行深…...

【AI大模型】LLM主流开源大模型介绍
目录 🍔 LLM主流大模型类别 🍔 ChatGLM-6B模型 2.1 训练目标 2.2 模型结构 2.3 模型配置(6B) 2.4 硬件要求 2.5 模型特点 2.6 衍生应用 🍔 LLaMA模型 3.1 训练目标 3.2 模型结构 3.3 模型配置(7B) 3.4 硬件…...

Uniapp的alertDialog返回值+async/await处理确定/取消问题
今天在使用uniui的alertDialog时,想添加一个确定/取消的警告框时 发现alertDialog和下面的处理同步进行了,没有等待alaertDialog处理完才进行 查询后发现问题在于 await 关键字虽然被用来等待 alertDialog.value.open() 的完成,但是 alertDi…...
Spring Boot中的响应与分层解耦架构
Spring Boot中的响应与分层解耦架构 在Spring Boot框架中,响应与分层解耦架构是两个核心概念,它们共同促进了应用程序的高效性、可维护性和可扩展性。下面将详细探讨这两个方面,包括Spring Boot的响应机制、分层解耦的三层架构以及它们在实际…...

基于python+django+vue的图书管理系统
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于pythondjangovueMySQL的图…...

Oracle数据库安装与SQL*Plus使用
一、实验过程 1、安装完数据库服务器程序后,查看系统服务启动状况并截图。 2、启动 SOL Plus工具,分别以SYS用户和 SYSTEM用户登录数据库,并解锁scott用户,用scott用户登录。每次登录完成后用show user命令查看当前用户,并截图。…...

C#通过MXComponent与三菱PLC通信
1,MXComponent安装包与手册。 https://download.csdn.net/download/lingxiao16888/89767137 2,使用管理员权限打开MXComponent,并进行配置。 3,引用相应的类库。 //通信类库 ActUtlTypeLib.dll或者ActProgType.dll 注明&#x…...

深度学习实战91-利用时空特征融合模型的城市网络流量预测分析与应用
大家好,我是微学AI,今天给大家介绍一下深度学习实战91-利用时空特征融合模型的城市网络流量预测分析与应用。本文围绕基于时空特征融合的城市网络流量预测展开。介绍了城市网络流量预测的重要性和现实需求,以及时空特征融合模型,包括其原理和优势。然后展示所使用的数据集,…...

GlusterFS 分布式文件系统
一、GlusterFS 概述 1.1 什么是GlusterFS GlusterFS 是一个开源的分布式文件系统,它可以将多个存储服务器结合在一起,创建一个大的存储池,供客户端使用。它不需要单独的元数据服务器,这样可以提高系统的性能和可靠性。由于没有…...

论文学习笔记6:Relation-Aware Heterogeneous Graph Neural Network for Fraud Detection
文章目录 Abstract一、Introduction二、Preliminaries2.1Problem Definition2.2Related Works 三、Proposed Method3.1Model Architecture3.2Computation Graph Pre-process3.3Heterogeneous Propagation Abstract 欺诈检测是金融和社交媒体领域的一项重要数据挖掘任务。传统的…...

无人机光电吊舱的技术!!
1. 成像技术 可见光成像:通过高分辨率相机捕捉地面或空中目标的清晰图像,提供直观的视觉信息。 红外热成像:利用红外辐射探测目标的温度分布,实现夜间或恶劣天气条件下的隐蔽目标发现。 多光谱成像:通过不同波段的光…...
C++——判断year是不是闰年。
没注释的源代码 #include <iostream> using namespace std; void Y(int y); int main() { int year; cout<<"请输入一个年份:"; cin>>year; Y(year); return 0; } void Y(int y) { if(((y%40)&&(y%100!0))||(y%…...

31. 三维向量Vector3与模型位置
点模型Points、线模型Line、网格网格模型Mesh等模型对象的父类都是Object3D (opens new window),如果想对这些模型进行旋转、缩放、平移等操作,如何实现,可以查询Threejs文档Object3D (opens new window)对相关属性和方法的介绍。 三维向量Ve…...
C# Action和delegate区别及示例代码
Action和delegate类似但没有返回值 Action和delegate在C#编程语言中有明显的区别,主要体现在它们的定义、用途和特性上。 1. 定义 Delegate:Delegate是C#中用于定义方法签名的类型,它允许将方法作为参数传递,或者将方法赋值给变…...

深度优先搜索: 探索图结构的括号化旅程
深度优先搜索: 探索图结构的括号化旅程 图的括号化结构示例图深度优先搜索的伪代码C语言实现解释运行结果总结在解决图相关问题时,深度优先搜索(DFS)是一种非常有用的算法。DFS 通过递归或使用栈的方式遍历图的节点,尽可能深地搜索每一个分支,然后回溯以搜索其他未访问的节…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...