动手学习RAG:大模型重排模型 bge-reranker-v2-gemma微调
- 动手学习RAG: 向量模型
- 动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习
- 动手学习RAG:rerank模型微调实践 bge-reranker-v2-m3
- 动手学习RAG:迟交互模型colbert微调实践 bge-m3
- 动手学习RAG: 大模型向量模型微调 intfloat/e5-mistral-7b-instruct
- 动手学习RAG:大模型重排模型 bge-reranker-v2-gemma微调
1. 环境准备
pip install transformers
pip install open-retrievals
- 注意安装时是
pip install open-retrievals
,但调用时只需要import retrievals
- 欢迎关注最新的更新 https://github.com/LongxingTan/open-retrievals
2. 使用大模型做重排
from retrievals import LLMRankermodel_name = 'BAAI/bge-reranker-v2-gemma'
model = LLMRanker.from_pretrained(model_name,causal_lm=True,use_fp16=True,)score = model.compute_score(['query', 'passage'])
print(score)scores = model.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
3. 微调
MODEL_NAME='BAAI/bge-reranker-v2-gemma'
TRAIN_DATA="/root/kag101/src/open-retrievals/t2/t2_ranking.jsonl"
OUTPUT_DIR="/root/kag101/src/open-retrievals/t2/ft_out"torchrun --nproc_per_node 1 \-m retrievals.pipelines.rerank \--output_dir ${OUTPUT_DIR} \--overwrite_output_dir \--model_name_or_path $MODEL_NAME \--model_type llm \--causal_lm True \--use_lora True \--data_name_or_path $TRAIN_DATA \--task_prompt "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'." \--query_instruction "A: " \--document_instruction 'B: ' \--positive_key positive \--negative_key negative \--learning_rate 2e-4 \--num_train_epochs 3 \--per_device_train_batch_size 4 \--gradient_accumulation_steps 16 \--dataloader_drop_last True \--max_len 256 \--train_group_size 4 \--logging_steps 10 \--save_steps 20000 \--save_total_limit 1 \--bf16
4. 评测
在C-MTEB中进行评测。微调前保留10%的数据集作为测试集验证
微调前的指标:
微调后的指标:
{"dataset_revision": null,"mteb_dataset_name": "CustomReranking","mteb_version": "1.1.1","test": {"evaluation_time": 77.35,"map": 0.7057362287508586,"mrr": 0.8166538440773136}
}
微调后map从0.637上升至0.706,mrr从0.734上升至0.816
相关文章:

动手学习RAG:大模型重排模型 bge-reranker-v2-gemma微调
动手学习RAG: 向量模型动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习动手学习RAG:rerank模型微调实践 bge-reranker-v2-m3动手学习RAG:迟交互模型colbert微调实践 bge-m3动手学习RAG: 大模型向量模型微调 intfloat/e5-mistral-7b-instruct动手学…...
蓝桥杯2024省C
P10898 [蓝桥杯 2024 省 C] 拼正方形 题目描述 小蓝正在玩拼图游戏,他有 7385137888721个 22的方块和 10470245 个 11 的方块,他需要从中挑出一些来拼出一个正方形,比如用 3 个 22 和 4 个 11 的方块可以拼出一个 44 的正方形,用…...

C++:内部类,匿名对象,操作符new与delete
一.内部类 1.如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,跟定义在全局相比,他只是受外部类类域限制和访问限定符限制,所以外部类定义的对象中不包含内部类。 2.内部类默认是外部类的友元类。…...

【数据结构】排序算法---计数排序
文章目录 1. 定义2. 算法步骤3. 动图演示4. 性质5. 算法分析6. 代码实现C语言PythonJavaGo 结语 1. 定义 计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组…...
mysql时间日期函数、获取当前日期和时间、日期和时间格式化、提取日期部分、日期和时间的算术操作、其他日期函数、日期和时间的比较、日期字符串转换
获取当前日期和时间 NOW():返回当前的日期和时间。CURDATE():返回当前的日期。CURTIME():返回当前的时间。 SELECT NOW(), CURDATE(), CURTIME(); 日期和时间格式化 DATE_FORMAT(date, format):根据指定的格式字符串格式化日期…...
Android开发高频面试题之——kotlin篇
Android开发高频面试题之——kotlin篇 Android开发高频面试题之——Java基础篇 Android开发高频面试题之——Kotlin基础篇 Android开发高频面试题之——Android基础篇 1. Kotlin如何实现空安全的? Kotlin 将变量划分为可空和不可空,通过查看字节码可知,声明不可空的变量会…...

8--SpringBoot原理分析、注解-详解(面试高频提问点)
目录 SpringBootApplication 1.元注解 --->元注解 Target Retention Documented Inherited 2.SpringBootConfiguration Configuration Component Indexed 3.EnableAutoConfiguration(自动配置核心注解) 4.ComponentScan Conditional Co…...
语言的枚举
不同语言的枚举 C/C枚举本质是整型,在Java中是对象,而非基本类型,可通过instanceof Object判断是否是对象类型。C#与Java不同,枚举是值类型。C语言更纯粹,枚举绝对当成整数,可以对枚举变量用整数赋值&…...
C# Redis 框架开发技术详解
引言 Redis 是一个高性能的键值存储系统,广泛用于缓存、消息队列和实时分析等场景。在 C# 中,有几个著名的库和框架可以方便地与 Redis 进行交互。以下是几个常用的 C# Redis 库: StackExchange.Redis: 这是目前最流行、最推荐的 C# Redis 客…...
Rust:Result 和 Error
在 Rust 编程语言中,错误处理是一个核心部分,用于确保程序的健売性和可靠性。Rust 通过 Result 枚举和 Error 特质(trait)来处理错误。 Result 枚举 Result 是一个泛型枚举,用于表示一个操作可能成功或失败。它有两个…...

Python基础(八)——MySql数据库
一.数据库 【库——>表——>数据】 借助数据库对数据进行组织存储,借助SQL语言对数据库、数据进行操作管理 Mysql数据库 下载:https://www.mysql.com/ 查看是否安装配置成功: 安装DBeaver用于Mysql数据库图形化 安装:…...

统一网关--gateway(仅供自己参考)
1、网关的概念: 2、网关的功能: (1):身份认证和权限校验 (2):服务路由(具体的业务路由到具体的服务),负载均衡(多台服务的话ÿ…...

【Leetcode152】分割回文串(回溯 | 递归)
文章目录 一、题目二、思路三、代码 一、题目 二、思路 具体例子和步骤:假设 s "aab",步骤如下: 初始状态: s "aab"path []res [] 第一层递归(外层循环): path []检…...

基于BiGRU+Attention实现风力涡轮机发电量多变量时序预测(PyTorch版)
前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对…...

深入探究 Flask 的应用和请求上下文
目标 读完本文后,您应该能够解释: 什么是上下文哪些数据同时存储在应用程序和请求上下文中在 Flask 中处理请求时,处理应用程序和请求上下文所需的步骤如何使用应用程序和请求上下文的代理如何在视图函数中使用current_app和代理request什么…...
C++学习笔记(30)
二十三、随机数 在实际开发中,经常用到随机数,例如:纸牌的游戏洗牌和发牌、生成测试数据等。 函数原型: void srand(unsigned int seed); // 初始化随机数生成器(播种子)。 int rand(); // 获一个取随机数。…...

Rust GUI框架 tauri V2 项目创建
文章目录 Tauri 2.0创建应用文档移动应用开发 Android 前置要求移动应用开发 iOS 前置要求参考资料 Tauri 2.0 Tauri 是一个构建适用于所有主流桌面和移动平台的轻快二进制文件的框架。开发者们可以集成任何用于创建用户界面的可以被编译成 HTML、JavaScript 和 CSS 的前端框架…...

C++继承(上)
1.继承的概念 继承是一个类继承另外一个类,称继承的类为子类/派生类,被继承的类称为父类/基类。 比如下面两个类,Student和Person,Student称为子类,Person称为父类。 #include<iostream> using namespace std…...
在 Vim 中打开文件并快速查询某个字符
在 Vim 中打开文件并快速查询某个字符,可以按照以下步骤操作: 打开 Vim 并加载文件: vim your_file.txt将 your_file.txt 替换为你要查询的文件名。 进入普通模式(如果你还在插入模式或其他模式下): Es…...
oracle 条件取反
在Oracle数据库中,条件取反主要通过逻辑运算符NOT来实现。NOT是一个单目运算符,用于对指定的条件表达式取反。当条件表达式为真(True)时,NOT运算符的结果就是假(False);反之…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...