动手学习RAG:大模型重排模型 bge-reranker-v2-gemma微调
- 动手学习RAG: 向量模型
- 动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习
- 动手学习RAG:rerank模型微调实践 bge-reranker-v2-m3
- 动手学习RAG:迟交互模型colbert微调实践 bge-m3
- 动手学习RAG: 大模型向量模型微调 intfloat/e5-mistral-7b-instruct
- 动手学习RAG:大模型重排模型 bge-reranker-v2-gemma微调

1. 环境准备
pip install transformers
pip install open-retrievals
- 注意安装时是
pip install open-retrievals,但调用时只需要import retrievals - 欢迎关注最新的更新 https://github.com/LongxingTan/open-retrievals
2. 使用大模型做重排
from retrievals import LLMRankermodel_name = 'BAAI/bge-reranker-v2-gemma'
model = LLMRanker.from_pretrained(model_name,causal_lm=True,use_fp16=True,)score = model.compute_score(['query', 'passage'])
print(score)scores = model.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)

3. 微调
MODEL_NAME='BAAI/bge-reranker-v2-gemma'
TRAIN_DATA="/root/kag101/src/open-retrievals/t2/t2_ranking.jsonl"
OUTPUT_DIR="/root/kag101/src/open-retrievals/t2/ft_out"torchrun --nproc_per_node 1 \-m retrievals.pipelines.rerank \--output_dir ${OUTPUT_DIR} \--overwrite_output_dir \--model_name_or_path $MODEL_NAME \--model_type llm \--causal_lm True \--use_lora True \--data_name_or_path $TRAIN_DATA \--task_prompt "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'." \--query_instruction "A: " \--document_instruction 'B: ' \--positive_key positive \--negative_key negative \--learning_rate 2e-4 \--num_train_epochs 3 \--per_device_train_batch_size 4 \--gradient_accumulation_steps 16 \--dataloader_drop_last True \--max_len 256 \--train_group_size 4 \--logging_steps 10 \--save_steps 20000 \--save_total_limit 1 \--bf16

4. 评测
在C-MTEB中进行评测。微调前保留10%的数据集作为测试集验证
微调前的指标:

微调后的指标:

{"dataset_revision": null,"mteb_dataset_name": "CustomReranking","mteb_version": "1.1.1","test": {"evaluation_time": 77.35,"map": 0.7057362287508586,"mrr": 0.8166538440773136}
}
微调后map从0.637上升至0.706,mrr从0.734上升至0.816
相关文章:
动手学习RAG:大模型重排模型 bge-reranker-v2-gemma微调
动手学习RAG: 向量模型动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习动手学习RAG:rerank模型微调实践 bge-reranker-v2-m3动手学习RAG:迟交互模型colbert微调实践 bge-m3动手学习RAG: 大模型向量模型微调 intfloat/e5-mistral-7b-instruct动手学…...
蓝桥杯2024省C
P10898 [蓝桥杯 2024 省 C] 拼正方形 题目描述 小蓝正在玩拼图游戏,他有 7385137888721个 22的方块和 10470245 个 11 的方块,他需要从中挑出一些来拼出一个正方形,比如用 3 个 22 和 4 个 11 的方块可以拼出一个 44 的正方形,用…...
C++:内部类,匿名对象,操作符new与delete
一.内部类 1.如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,跟定义在全局相比,他只是受外部类类域限制和访问限定符限制,所以外部类定义的对象中不包含内部类。 2.内部类默认是外部类的友元类。…...
【数据结构】排序算法---计数排序
文章目录 1. 定义2. 算法步骤3. 动图演示4. 性质5. 算法分析6. 代码实现C语言PythonJavaGo 结语 1. 定义 计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组…...
mysql时间日期函数、获取当前日期和时间、日期和时间格式化、提取日期部分、日期和时间的算术操作、其他日期函数、日期和时间的比较、日期字符串转换
获取当前日期和时间 NOW():返回当前的日期和时间。CURDATE():返回当前的日期。CURTIME():返回当前的时间。 SELECT NOW(), CURDATE(), CURTIME(); 日期和时间格式化 DATE_FORMAT(date, format):根据指定的格式字符串格式化日期…...
Android开发高频面试题之——kotlin篇
Android开发高频面试题之——kotlin篇 Android开发高频面试题之——Java基础篇 Android开发高频面试题之——Kotlin基础篇 Android开发高频面试题之——Android基础篇 1. Kotlin如何实现空安全的? Kotlin 将变量划分为可空和不可空,通过查看字节码可知,声明不可空的变量会…...
8--SpringBoot原理分析、注解-详解(面试高频提问点)
目录 SpringBootApplication 1.元注解 --->元注解 Target Retention Documented Inherited 2.SpringBootConfiguration Configuration Component Indexed 3.EnableAutoConfiguration(自动配置核心注解) 4.ComponentScan Conditional Co…...
语言的枚举
不同语言的枚举 C/C枚举本质是整型,在Java中是对象,而非基本类型,可通过instanceof Object判断是否是对象类型。C#与Java不同,枚举是值类型。C语言更纯粹,枚举绝对当成整数,可以对枚举变量用整数赋值&…...
C# Redis 框架开发技术详解
引言 Redis 是一个高性能的键值存储系统,广泛用于缓存、消息队列和实时分析等场景。在 C# 中,有几个著名的库和框架可以方便地与 Redis 进行交互。以下是几个常用的 C# Redis 库: StackExchange.Redis: 这是目前最流行、最推荐的 C# Redis 客…...
Rust:Result 和 Error
在 Rust 编程语言中,错误处理是一个核心部分,用于确保程序的健売性和可靠性。Rust 通过 Result 枚举和 Error 特质(trait)来处理错误。 Result 枚举 Result 是一个泛型枚举,用于表示一个操作可能成功或失败。它有两个…...
Python基础(八)——MySql数据库
一.数据库 【库——>表——>数据】 借助数据库对数据进行组织存储,借助SQL语言对数据库、数据进行操作管理 Mysql数据库 下载:https://www.mysql.com/ 查看是否安装配置成功: 安装DBeaver用于Mysql数据库图形化 安装:…...
统一网关--gateway(仅供自己参考)
1、网关的概念: 2、网关的功能: (1):身份认证和权限校验 (2):服务路由(具体的业务路由到具体的服务),负载均衡(多台服务的话ÿ…...
【Leetcode152】分割回文串(回溯 | 递归)
文章目录 一、题目二、思路三、代码 一、题目 二、思路 具体例子和步骤:假设 s "aab",步骤如下: 初始状态: s "aab"path []res [] 第一层递归(外层循环): path []检…...
基于BiGRU+Attention实现风力涡轮机发电量多变量时序预测(PyTorch版)
前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对…...
深入探究 Flask 的应用和请求上下文
目标 读完本文后,您应该能够解释: 什么是上下文哪些数据同时存储在应用程序和请求上下文中在 Flask 中处理请求时,处理应用程序和请求上下文所需的步骤如何使用应用程序和请求上下文的代理如何在视图函数中使用current_app和代理request什么…...
C++学习笔记(30)
二十三、随机数 在实际开发中,经常用到随机数,例如:纸牌的游戏洗牌和发牌、生成测试数据等。 函数原型: void srand(unsigned int seed); // 初始化随机数生成器(播种子)。 int rand(); // 获一个取随机数。…...
Rust GUI框架 tauri V2 项目创建
文章目录 Tauri 2.0创建应用文档移动应用开发 Android 前置要求移动应用开发 iOS 前置要求参考资料 Tauri 2.0 Tauri 是一个构建适用于所有主流桌面和移动平台的轻快二进制文件的框架。开发者们可以集成任何用于创建用户界面的可以被编译成 HTML、JavaScript 和 CSS 的前端框架…...
C++继承(上)
1.继承的概念 继承是一个类继承另外一个类,称继承的类为子类/派生类,被继承的类称为父类/基类。 比如下面两个类,Student和Person,Student称为子类,Person称为父类。 #include<iostream> using namespace std…...
在 Vim 中打开文件并快速查询某个字符
在 Vim 中打开文件并快速查询某个字符,可以按照以下步骤操作: 打开 Vim 并加载文件: vim your_file.txt将 your_file.txt 替换为你要查询的文件名。 进入普通模式(如果你还在插入模式或其他模式下): Es…...
oracle 条件取反
在Oracle数据库中,条件取反主要通过逻辑运算符NOT来实现。NOT是一个单目运算符,用于对指定的条件表达式取反。当条件表达式为真(True)时,NOT运算符的结果就是假(False);反之…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
