链式二叉树的基本操作(C语言版)
目录
1.二叉树的定义
2.创建二叉树
3.递归遍历二叉树
1)前序遍历
2)中序遍历
3)后序遍历
4.层序遍历
5.计算节点个数
6.计算叶子节点个数
7.计算第K层节点个数
8.计算树的最大深度
9.查找值为x的节点
10.二叉树的销毁

从二叉树的概念中我们知道任何二叉树都难被分为,根,左子树,右子树,而左子树依然能被分为,根,左子树,右子树。右子树也是,所以我们这里可以采用递归的玩法来操作二叉树。
1.二叉树的定义
typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;
2.创建二叉树
由于是初学,为了便于观察,我们这里手搓一个二叉树
BTNode* CreateTree()
{BTNode* n1 = (BTNode*)malloc(sizeof(BTNode));assert(n1);BTNode* n2 = (BTNode*)malloc(sizeof(BTNode));assert(n2);BTNode* n3 = (BTNode*)malloc(sizeof(BTNode));assert(n3);BTNode* n4 = (BTNode*)malloc(sizeof(BTNode));assert(n4);BTNode* n5 = (BTNode*)malloc(sizeof(BTNode));assert(n5);BTNode* n6 = (BTNode*)malloc(sizeof(BTNode));assert(n6);BTNode* n7 = (BTNode*)malloc(sizeof(BTNode));assert(n7);n1->data = 1;n2->data = 2;n3->data = 3;n4->data = 4;n5->data = 5;n6->data = 6;n1->left = n2;n1->right = n4;n2->left = n3;n2->right = NULL;n3->left = NULL;n3->right = n7;n4->left = n5;n4->right = n6;n5->left = NULL;n5->right = NULL;n6->left = NULL;n6->right = NULL;n7->left = NULL;n7->right = NULL;n7->data = 7;return n1;}
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。
3.递归遍历二叉树
根,左子树,右子树,遍历顺序的不同导致访问的结果也不同,先学习这三种遍历,这里递归较为简单,为我们后面做一些二叉树的oj题目打下基础。
按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:
1)前序遍历
前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
// 二叉树前序遍历
void PreOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}printf("%d ", root->data);PreOrder(root->left);PreOrder(root->right);
}
2)中序遍历
中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
// 二叉树中序遍历
void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}
3)后序遍历
后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
// 二叉树后序遍历
void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}
4.层序遍历
层序遍历,自上到下,自左到右依次访问数的结点就是层序遍历。
思想(借助一个队列):
1、先将根节点入队,然后开始从队头出数据
2、出队头的数据同时将队头左右子树的结点入队(遇到NULL则不入队)
3、重复第二步,直到队列为空
//层序遍历
void TreeLevelOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ", front->data);if (front->left)QueuePush(&q, front->left);if (front->right)QueuePush(&q, front->right);}printf("\n");
}
5.计算节点个数
求树的结点总数时,可以将问题拆解成子问题:
1.若为空,则结点个数为0。
2.若不为空,则结点个数 = 左子树结点个数 + 右子树结点个数 + 1(自己)
int TreeSize(BTNode* root)
{return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}
6.计算叶子节点个数
子问题拆解:
1.若为空,则叶子结点个数为0。
2.若结点的左指针和右指针均为空,则叶子结点个数为1。
3.除上述两种情况外,说明该树存在子树,其叶子结点个数 = 左子树的叶子结点个数 + 右子树的叶子结点个数。
//叶子节点个数
int TreeLeaSize(BTNode* root)
{if (root == NULL)return 0;return (root->left == NULL && root->right == NULL) ? 1 : TreeLeaSize(root->left) + TreeLeaSize(root->right);
}
7.计算第K层节点个数
这里我们要控制好递归的深度,我们依然把他给转换为子问题思考。
思路:
1、为空和非法时,结点个数为0个
2、为第一层时,结点个数为1个
3、不为空且合法时,第K层的结点个数=第K-1层的左子树结点个数+第K-1层的右子树结点个数
int TreeKLevel(BTNode* root, int k)
{assert(k > 0);if (root == NULL){return 0;}if (k == 1){return 1;}return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}
8.计算树的最大深度
我们如何找出最深的那一条途径?这里是一个选择的问题。如果一条途径递归到倒数第二层,左边有一个叶子节点,右边无节点,那么我们应该选择左边作为它的最深途径。
思路:
1.若为空,则深度为0。
2.若不为空,则树的最大深度 = 左右子树中深度较大的值 + 1。
int TreeHeigh(BTNode* root)
{if (root == NULL)return 0;return TreeHeigh(root->left) > TreeHeigh(root->right) ? TreeHeigh(root->left) + 1 :TreeHeigh(root->right) + 1;
}
9.查找值为x的节点
思路:
1.先判断根结点是否是目标结点。
2.再去左子树中寻找。
3.最后去右子树中寻找。
BTNode* TreeFind(BTNode* root, BTDataType x)
{if (root == NULL){return NULL;}if (root->data == x){return root;}//先去左树找BTNode* lret = TreeFind(root->left, x);if (lret)return lret;//再去右树找BTNode* rret = TreeFind(root->right, x);if (rret)return rret;return NULL;
}
10.二叉树的销毁
void BinaryTressDestory(BTNode* root)
{if (root == NULL)return;BinaryTressDestory(root->left);BinaryTressDestory(root->right);free(root);
}
相关文章:
链式二叉树的基本操作(C语言版)
目录 1.二叉树的定义 2.创建二叉树 3.递归遍历二叉树 1)前序遍历 2)中序遍历 3)后序遍历 4.层序遍历 5.计算节点个数 6.计算叶子节点个数 7.计算第K层节点个数 8.计算树的最大深度 9.查找值为x的节点 10.二叉树的销毁 从二叉树…...
Tcp三次握手四次挥手和SSL/TLS
1.Tcp三次握手四次挥手: 1.1基本概念: TCP(三次握手和四次挥手)是用于建立和终止可靠传输连接的过程。TCP协议是一种面向连接的传输层协议,确保数据在网络上可靠、有序地传输。下面详细解释三次握手和四次挥手的工作机…...
大棚分割数据集,40765对影像,16.9g数据量,0.8米高分二,纯手工标注(arcgis标注)的大规模农业大棚分割数据集。
数据集名称: )“Greenhouse Segmentation Dataset (GSD)” 数据集规模: 包含40,765对用于大棚分割的影像数据,每对影像包括一张原始图像和相应的分割标签图。 数据量: 总数据量约为16.9GB,适合存储在现…...
Jenkins插件安装失败时这么做就搞定啦!
1.网络或墙的问题导致插件下载安装失败 这种错误提示很明显,就是无法连接到插件下载地址,导致插件下载失败。 解决方法 为Jenkins更换源 点击Jenkins主页面左侧列表中【系统管理】—— 下拉找到【管理插件】 选择【高级】选项卡 替换最下方【升级站点…...
优化器与现有网络模型的修改
文章目录 一、优化器是什么二、优化器的使用三、分类模型VGG16四、现有网络模型的修改 一、优化器是什么 优化器(Optimizer)是一个算法,用于在训练过程中调整模型的参数,以便最小化损失函数(Loss Function)…...
kafka 超详细的消息订阅与消息消费几种方式
kafka 消息订阅与消息消费几种方式 本文主要内容 消费者订阅几种方式 订阅多个主题 按正则表达式订阅 消息消费几种方式 按分区消费 按主题消费 不区分 “ 笔者建议一开始学习Kafka最好不要用SpringBoot 集成方式,因为SpringBoot推崇用注解方式,比如KafkaList…...
C++ 第三讲:内存管理
C 第三讲:内存管理 1.C内存分布2.内存管理方式2.1C语言内存管理方式2.2C内存管理方式2.2.1new\delete操作内置类型2.2.2new\delete操作自定义类型 3.operator new与operator delete函数4.new和delete实现原理4.1内置类型4.2自定义类型 5.定位new5.1内存池的基本了解…...
LeeCode打卡第二十九天
LeeCode打卡第二十九天 第一题:岛屿数量(LeeCode第200题): 给你一个由 1(陆地)和 0(水)组成的的二维网格,请你计算网格中岛屿的数量。岛屿总是被水包围,并且每座岛屿只…...
阿里云专业翻译api对接
最近我们一个商城项目涉及多语言切换,默认中文。用户切换语言可选英语和阿拉伯语言,前端APP和后端返回动态数据都要根据用户选择语言来展示。前端静态内容都做了三套语言,后端商品为了适用这种多语言我们也进行了改造。每一件商品名称&#x…...
基于Spring Boot的能源管理系统+建筑能耗+建筑能耗监测系统+节能监测系统+能耗监测+建筑能耗监测
介绍 建筑节能监测系统是基于计算机网络、物联网、大数据和数据可视化等多种技术融合形成的一套节能监测系统。 系统实现了对建筑电、水、热,气等能源、资源消耗情况的实时监测和预警、动态分析和评估,为用户建立了科学、系统的节能分析方法,…...
大数据新视界 --大数据大厂之 Cassandra 分布式数据库:高可用数据存储的新选择
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...
ROS第五梯:ROS+VSCode+C++单步调试
解决问题:在ROS项目中进行断点调试。 第一步:创建一个ROS项目或者打开一个现有的ROS项目。 第二步:修改c_cpp_properties.json 增加一段命令: "compileCommands": "${workspaceFolder}/build/compile_commands.json"第三…...
SLA 概念和计算方法
SLA 概念和计算方法 SLA SLA:服务等级协议(简称:SLA,全称:service level agreement) 网站服务可用性的一个保证 9越多代表全年服务可用时间越长服务更可靠,停机时间越短,反之亦然…...
C++比大小游戏
目录 开头程序程序的流程图程序游玩的效果下一篇博客要说的东西 开头 大家好,我叫这是我58。 程序 #include <iostream> #include <Windows.h> using namespace std; int main() {int ir 1;char chparr[2] { 0 };int ip1 0;int ip2 0;int i 1;c…...
PCIe进阶之TL:Memory, I/O, and Configuration Request Rules TPH Rules
1 Memory, I/O, and Configuration Request Rules 下述规则适用于 Memory 请求、IO 请求和配置请求。 除了公共的 header 字段外,所有 Memory 请求、IO 请求和配置请求还包括以下字段: (1)Requester ID[15:0] 和 Tag[9:0],组成了 Transaction ID 。 (2)Last DW BE[3:0]…...
【初阶数据结构】一文讲清楚 “堆” 和 “堆排序” -- 树和二叉树(二)(内含TOP-K问题)
文章目录 前言1. 堆1.1 堆的概念1.2 堆的分类 2. 堆的实现2.1 堆的结构体设置2.2 堆的初始化2.3 堆的销毁2.4 添加数据到堆2.4.1 "向上调整"算法 2.5 从堆中删除数据2.5.1 “向下调整”算法 2.6 堆的其它各种方法接口函数 3. 堆排序3.1 堆排序的代码实现 4. TOP-K问题…...
sqli-lab靶场学习(二)——Less8-10(盲注、时间盲注)
Less8 第八关依然是先看一般状态 http://localhost/sqli-labs/Less-8/?id1 然后用单引号闭合: http://localhost/sqli-labs/Less-8/?id1 这关的问题在于报错是不显示,那没办法通过上篇文章的updatexml大法处理。对于这种情况,需要用“盲…...
Dijkstra算法和BFS算法(单源最短路径)
基于你设计的带权有向图,从某一结点出发,执行Dijkstra算法求单源最短路径。用文字描述每一轮执行的过程 文字描述:用BFS算法求单源最短路径的过程 Dijkstra 算法 BFS算法 广度优先算法...
在WordPress中最佳Elementor主题推荐:专家级指南
对于已经在WordPress和Elementor上有丰富经验的用户来说,选择功能强大且高度灵活的主题,能大大提升网站的表现和定制能力。今天,我们来介绍六款适合用户的专家级Elementor主题:Sydney、Blocksy、Rife Free、Customify、Deep和Laye…...
关于RabbitMQ消息丢失的解决方案
RabbitMQ如何保证消息的可靠性传输 一、消息丢失的原因 1. 生产者端 网络问题: 原因:生产者与RabbitMQ服务器之间的网络连接不稳定或中断,导致消息在传输过程中丢失。解决方案:确保网络连接稳定,监控网络状态&#x…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
