AutoML-sklearn and torch
一、auto-sklearn
1.1 环境依赖
-
额外安装swig 第三方库
-
linux 支持, mac,windows不支持
1.2 示例代码
time_left_for_this_task 设定任务最大时间
per_run_time_limit 每个子任务最大训练时间
include 可以限制任务训练的模型
import autosklearn.classification
import sklearn.model_selection
from sklearn import datasets
import sklearn.metricsif __name__ == "__main__":X, y = datasets.load_breast_cancer(return_X_y=True)X_train, X_test, y_train, y_test = \sklearn.model_selection.train_test_split(X, y, random_state=1)automl = autosklearn.classification.AutoSklearnClassifier(time_left_for_this_task=120,per_run_time_limit=30,tmp_folder="/tmp/autosklearn_classification_example_tmp",include={'classifier': ["random_forest"],'feature_preprocessor': ["no_preprocessing"]})automl.fit(X_train, y_train)y_hat = automl.predict(X_test)automl.get_models_with_weights()print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))print(automl.leaderboard())models_with_weights = automl.get_models_with_weights()with open('../../preprocess/models_report.txt', 'w') as f:for model in models_with_weights:f.write(str(model) + '\n')
结果展示:
可以展示参数任务cost值排列顺序

以及训练参数配置:

1.3 模块扩展
在不支持的训练模块,可以扩展及自定义模型进行自动调参
代码示例:
继承AutoSklearnClassificationAlgorithm 并重写子方法
autosklearn.pipeline.components.classification.add_classifier(MLPClassifier) 将自定义模块注册至模块中
include 参数添加既可调用
"""
====================================================
Extending Auto-Sklearn with Classification Component
====================================================The following example demonstrates how to create a new classification
component for using in auto-sklearn.
"""
from typing import Optional
from pprint import pprintfrom ConfigSpace.configuration_space import ConfigurationSpace
from ConfigSpace.hyperparameters import (CategoricalHyperparameter,UniformIntegerHyperparameter,UniformFloatHyperparameter,
)import sklearn.metricsfrom autosklearn.askl_typing import FEAT_TYPE_TYPE
import autosklearn.classification
import autosklearn.pipeline.components.classification
from autosklearn.pipeline.components.base import AutoSklearnClassificationAlgorithm
from autosklearn.pipeline.constants import (DENSE,SIGNED_DATA,UNSIGNED_DATA,PREDICTIONS,
)from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split############################################################################
# Create MLP classifier component for auto-sklearn
# ================================================class MLPClassifier(AutoSklearnClassificationAlgorithm):def __init__(self,hidden_layer_depth,num_nodes_per_layer,activation,alpha,solver,random_state=None,):self.hidden_layer_depth = hidden_layer_depthself.num_nodes_per_layer = num_nodes_per_layerself.activation = activationself.alpha = alphaself.solver = solverself.random_state = random_statedef fit(self, X, y):self.num_nodes_per_layer = int(self.num_nodes_per_layer)self.hidden_layer_depth = int(self.hidden_layer_depth)self.alpha = float(self.alpha)from sklearn.neural_network import MLPClassifierhidden_layer_sizes = tuple(self.num_nodes_per_layer for i in range(self.hidden_layer_depth))self.estimator = MLPClassifier(hidden_layer_sizes=hidden_layer_sizes,activation=self.activation,alpha=self.alpha,solver=self.solver,random_state=self.random_state,)self.estimator.fit(X, y)return selfdef predict(self, X):if self.estimator is None:raise NotImplementedError()return self.estimator.predict(X)def predict_proba(self, X):if self.estimator is None:raise NotImplementedError()return self.estimator.predict_proba(X)@staticmethoddef get_properties(dataset_properties=None):return {"shortname": "MLP Classifier","name": "MLP CLassifier","handles_regression": False,"handles_classification": True,"handles_multiclass": True,"handles_multilabel": False,"handles_multioutput": False,"is_deterministic": False,# Both input and output must be tuple(iterable)"input": [DENSE, SIGNED_DATA, UNSIGNED_DATA],"output": [PREDICTIONS],}@staticmethoddef get_hyperparameter_search_space(feat_type: Optional[FEAT_TYPE_TYPE] = None, dataset_properties=None):cs = ConfigurationSpace()hidden_layer_depth = UniformIntegerHyperparameter(name="hidden_layer_depth", lower=1, upper=3, default_value=1)num_nodes_per_layer = UniformIntegerHyperparameter(name="num_nodes_per_layer", lower=16, upper=216, default_value=32)activation = CategoricalHyperparameter(name="activation",choices=["identity", "logistic", "tanh", "relu"],default_value="relu",)alpha = UniformFloatHyperparameter(name="alpha", lower=0.0001, upper=1.0, default_value=0.0001)solver = CategoricalHyperparameter(name="solver", choices=["lbfgs", "sgd", "adam"], default_value="adam")cs.add_hyperparameters([hidden_layer_depth,num_nodes_per_layer,activation,alpha,solver,])return cs# Add MLP classifier component to auto-sklearn.
autosklearn.pipeline.components.classification.add_classifier(MLPClassifier)
cs = MLPClassifier.get_hyperparameter_search_space()
print(cs)############################################################################
# Data Loading
# ============
def get_local_csv():import pandas as pdimport numpy as npdf = pd.read_csv("/data/projects/example/auto_ml/Radiomics-2D/features.csv")label = pd.read_csv("/data/projects/example/auto_ml/Radiomics-2D/labels.csv")["label"]label = np.array([1 if l == "Positive" else 0 for l in label])return df.to_numpy(), label# local
X, y = get_local_csv()# breast cancer
# X, y = load_breast_cancer(return_X_y=True)X_train, X_test, y_train, y_test = train_test_split(X, y)############################################################################
# Fit MLP classifier to the data
# ==============================clf = autosklearn.classification.AutoSklearnClassifier(time_left_for_this_task=60,per_run_time_limit=30,include={"classifier": ["gradient_boosting", "adaboost", "MLPClassifier"],'feature_preprocessor': ["no_preprocessing"]},
)
clf.fit(X_train, y_train)############################################################################
# Print test accuracy and statistics
# ==================================y_pred = clf.predict(X_test)
print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test))
print(clf.sprint_statistics())
print(clf.leaderboard(detailed=False,top_k=30))
pprint(clf.show_models(), indent=4)models_with_weights = clf.get_models_with_weights()
with open('./models_report.txt', 'w') as f:for model in models_with_weights:f.write(str(model) + '\n')
二、auto-pytorch
1. 1 环境依赖
额外安装brew install cmake
lightgbm 库依赖第三方库 pip install lightgbm
brew install libomp
pip install autoPyTorch
mac 允许不限制memory, M1 芯片对内容限制的操作目前还有bug

1.2 支持用法
支持大量的表格型数据,图片数据支持少,且不支持扩展

代码示例:
用法比较固定,没有更多的文档来作为参考,且无法扩展。
import numpy as npimport sklearn.model_selectionimport torchvision.datasetsfrom autoPyTorch.pipeline.image_classification import ImageClassificationPipeline# Get the training data for tabular classification
trainset = torchvision.datasets.FashionMNIST(root='../datasets/', train=True, download=True)
data = trainset.data.numpy()
data = np.expand_dims(data, axis=3)
# Create a proof of concept pipeline!
dataset_properties = dict()
pipeline = ImageClassificationPipeline(dataset_properties=dataset_properties)# Train and test split
train_indices, val_indices = sklearn.model_selection.train_test_split(list(range(data.shape[0])),random_state=1,test_size=0.25,
)# Configuration space
pipeline_cs = pipeline.get_hyperparameter_search_space()
print("Pipeline CS:\n", '_' * 40, f"\n{pipeline_cs}")
config = pipeline_cs.sample_configuration()
print("Pipeline Random Config:\n", '_' * 40, f"\n{config}")
pipeline.set_hyperparameters(config)# Fit the pipeline
print("Fitting the pipeline...")pipeline.fit(X=dict(X_train=data,is_small_preprocess=True,dataset_properties=dict(mean=np.array([np.mean(data[:, :, :, i]) for i in range(1)]),std=np.array([np.std(data[:, :, :, i]) for i in range(1)]),num_classes=10,num_features=data.shape[1] * data.shape[2],image_height=data.shape[1],image_width=data.shape[2],is_small_preprocess=True),train_indices=train_indices,val_indices=val_indices,))# Showcase some components of the pipeline
print(pipeline)
相关文章:
AutoML-sklearn and torch
一、auto-sklearn 1.1 环境依赖 额外安装swig 第三方库 linux 支持, mac,windows不支持 1.2 示例代码 time_left_for_this_task 设定任务最大时间 per_run_time_limit 每个子任务最大训练时间 include 可以限制任务训练的模型 import autosklearn.classific…...
《扬帆优配》算力概念股大爆发,主力资金大扫货
3月22日,9股封单金额超亿元,工业富联、鸿博股份、鹏鼎控股分别为3.01亿元、2.78亿元、2.37亿元。 今日三大指数团体收涨,收盘共34股涨停,首要集中于数字经济方向,其间云核算、CPO大迸发。除去5只ST股,算计2…...
机械臂+底盘三维模型从solidworks到moveit配置功能包
文章目录 导出底盘STEP加载机械臂模型组合机械臂和底盘三维模型导出URDF在moveit中进行配置新建工作目录设置ROS工作空间的环境变量进入moveit setup加载URDF文件self-CollisionsPlanning groupsRobot posesControllersSimulationAuthor information生成配置包在rviz中进行可视…...
高并发系统设计:缓存、降级、限流、(熔断)
高并发系统设计:缓存、降级、限流、(熔断) 在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流。 非核心服务可以采用降级、熔断,核心服务采用缓存和限流(隔离流量可以最大限度的保障业务无损)。 缓存 缓…...
《辉煌优配》放量大涨,A股成交额重回万亿!PCB板块继续领跑
多只绩优PCB概念股超跌。 今日A股放量反弹,成交额从头站上万亿关口。芯片板块掀涨停潮,景嘉微、芯原股份20cm涨停,紫光国微、兆易创新、跃岭股份等封板;AI算力、存储器、光模块、云核算等板块全线拉升,板块内个股再度批…...
Vue封装的过度与动画
动画效果 先把样式封装好,然后设置一个动画 不需要vue也能实现的动画的效果,我们只需要判断一下,然后动态的添加和删除类名即可 那能不能不自己写动态,就靠vue 首先我们要靠<transition>标签把需要动画的包裹起来 vue中…...
流量监控-ntopng
目录介绍安装使用介绍 ntopng是原始ntop的下一代版本,ntop是监视网络使用情况的网络流量探测器。ntopng基于libpcap,并且以可移植的方式编写,以便实际上可以在每个Unix平台,MacOSX和Windows上运行。 ntopng(是的&…...
C++ 21 set容器
目录 一、set容器 1.1 简介 1.2 构造和赋值 1.3 大小和交换 1.4 插入和删除 1.5 查找和统计 1.6 set和multiset区别 1.7 内置类型指定排序规则 1.8 自定义数据类型指定排序规则 一、set容器 1.1 简介 ① set容器中所有元素在插入时自动被排序。 ② set容器和multise…...
什么是JWT
JSON Web Token(缩写 JWT)是目前最流行的跨域认证解决方案。 传统的session认证 http协议本身是一种无状态的协议,而这就意味着如果用户向我们的应用提供了用户名和密码来进行用户认证,那么下一次请求时,用户还要再一…...
Gradle7.4安装
前置:本文基于IntelliJ IDEA 2022.2.1 、jdk1.8进行安装 目录 1.挑选Gradle版本 2.系统变量设置 1.挑选Gradle版本 gradle兼容性差, 1.跟idea会有版本问题。 2.跟springboot也有兼容问题Spring Boot Gradle Plugin Reference Guide 首先查询版本&…...
【华为OD机试 2023最新 】 箱子之字形摆放(C++ 100%)
文章目录 题目描述输入描述输出描述备注用例题目解析C++题目描述 有一批箱子(形式为字符串,设为str), 要求将这批箱子按从上到下以之字形的顺序摆放在宽度为 n 的空地,请输出箱子的摆放位置。 例如:箱子ABCDEFG,空地宽度为3,摆放结果如图: 则输出结果为: AFG BE CD …...
Matplotlib库入门
Matplotlib库的介绍 什么是Matplotlib库? Matplotlib是一个Python的数据可视化库,用于绘制各种类型的图表,包括线图、散点图、条形图、等高线图、3D图等等。它是一个非常强大和灵活的库,被广泛用于数据科学、机器学习、工程学、…...
学生党用什么蓝牙耳机比较好?300内高性价比蓝牙耳机排行
随着蓝牙技术的发展,蓝牙耳机越来越普及,不同价位、不同性能的蓝牙耳机数不胜数。那么,学生党用什么蓝牙耳机比较好?下面,我来给大家推荐几款三百内高性价比蓝牙耳机,一起来看看吧。 一、南卡小音舱蓝牙耳…...
Lambda 表达式与函数式接口
函数式接口 如果一个接口,只有一个抽象方法,该接口即为函数式接口。函数式接口,即可使用 Lambda 表达式。 如下面的接口 public interface Translate {void translate();}目前该接口的抽象方法为无参数无返回值 Lambda 表达式 无参无返回值…...
后端代码规范
1、报文入参尽量避免使用实体类(如果用实体类接受参数,一定要写好注解,具体用到了实体类的哪一个属性) /*** * Description: 新增玉米观测记录主表信息* param param params* param return 参数* return Result 返回类型* author…...
web自动化测试:Selenium+Python基础方法封装(建议收藏)
01、目的 web自动化测试作为软件自动化测试领域中绕不过去的一个“香饽饽”,通常都会作为广大测试从业者的首选学习对象,相较于C/S架构的自动化来说,B/S有着其无法忽视的诸多优势,从行业发展趋、研发模式特点、测试工具支持&…...
while实现1到100相加求和-课后程序(JavaScript前端开发案例教程-黑马程序员编著-第2章-课后作业)
【案例2-7】while实现1到100相加求和 一、案例描述 考核知识点 while循环语句 练习目标 掌握while循环语句。 需求分析 1-100之间的数相加求和,本案例通过while循环语句来实现。 案例分析 效果如图2-10所示。1-100所有数的和 具体实现步骤如下: 在&l…...
Thingsboard(2.4 postgresql版)数据库表结构说明
本文描述的表结构是根据thingsboard2.4(postgresql版)数据库中整理出来的,不一定完整,后续有新的发现再补充文档。 一、数据库E-R关系 Thingsboard2.4社区版共22个表,主要包括实体信息表、关系信息表、字典表和系统配…...
IDS反病毒与APT的具体介绍
文章目录一,IDS1. 什么是IDS?2. IDS和防火墙有什么不同?3. IDS工作原理?4. IDS的主要检测方法有哪些详细说明?5. IDS的部署方式有哪些?6. IDS的签名是什么意思?签名过滤器有什么作用?…...
while do..while验证用户名和密码-课后程序(JavaScript前端开发案例教程-黑马程序员编著-第2章-课后作业)
【案例2-8】while do..while验证用户名和密码 一、案例描述 考核知识点 while、do…while循环语句 练习目标 掌握while语句。do…while循环语句。 需求分析 在网站上登录时会用到表单,让用户属于用户名和密码,输入正确才可以进入,本案例将…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
