模型训练时CPU和GPU大幅度波动——可能是数据的读入拖后腿
模型训练时CPU和GPU大幅度波动——可能是数据的加载拖后腿
问题
在进行猫狗大战分类任务时,发现模型训练时CPU和GPU大幅度波动,且模型训练速度很慢。
原因
初步分析可能是数据加载(包括数据的transform,我用了Resize,ToTensor,Normalize这三个操作)的的速度太慢,于是通过计算一个epoch数据加载的时间来判断,最后发现数据加载的数据和一个epoch训练的时间差不太多(因为用的模型较小,是ResNet18,如果模型比较大,训练时间比数据加载时间大得多的时候,这种情况CPU和GPU的波动频率和幅度会好很多,情况最好的是,在训练一个完batch的数据前,下一个batch的数据已经准备好了)。测量加载时间代码如下:
import time
from torch.utils.data import DataLoaderdata_loader = DataLoader(dataset, batch_size=64)
start_time = time.time()# 遍历数据加载器中的所有批次
for i, data in enumerate(data_loader):passend_time = time.time()
# 计算并打印整个数据读取的时间
total_time = end_time - start_time
print(f"Total data loading time: {total_time:.4f} seconds")
然后再计算训练一个epoch的时间,若没有比加载数据的时间大很多的话,大概率就是数据加载拖后腿了。
解决方法
我使用的是方法是将所有数据一次性读入内存中,避免频繁进行磁盘IO,这样集中把所有数据读出来的时间要比一边训练一边读要快的多(使用较小的模型一般数据量不大,全部读入内存应该没什么问题,如果数据量较大呢?这时候用的模型一般也会较大,训练的时间占据主导,这时候就基本不会出现gpu等待数据的情况了)。以猫狗大战这个任务来说,自定义的Dataset如下,关键代码后用!!!..表示:
class CatDogDataset(Dataset):def __init__(self, root_dir, transform=None, test=False):self.root_dir = root_dirself.transform = transformself.image_paths = []self.image_data = [] # !!!!!!!!!!!!!!!!!!! self.labels = []self.test = testfor filename in os.listdir(root_dir):if filename.endswith('.jpg'):image_path = os.path.join(root_dir, filename)image = Image.open(image_path).convert('RGB') # 转换为RGB格式if self.transform:image = self.transform(image)self.image_paths.append(image_path) self.image_data.append(image) # !!!!!!!!!!!!!!!!!!!! 将所有图片读到内存进来if not test:if 'cat' in filename:self.labels.append(0) # cat 类别标记为 0elif 'dog' in filename:self.labels.append(1) # dog 类别标记为 1def __len__(self):return len(self.image_data)def __getitem__(self, idx):if self.test:return self.image_data[idx], self.image_paths[idx] # 测试集返回图像及其路径else:return self.image_data[idx], self.labels[idx]
相关文章:
模型训练时CPU和GPU大幅度波动——可能是数据的读入拖后腿
模型训练时CPU和GPU大幅度波动——可能是数据的加载拖后腿 问题 在进行猫狗大战分类任务时,发现模型训练时CPU和GPU大幅度波动,且模型训练速度很慢。 原因 初步分析可能是数据加载(包括数据的transform,我用了Resize&#…...

keep-alive的应用场景
...

【C++ Primer Plus习题】16.9
大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: #include <iostream> #include <ctime> #include <v…...

Java入门:09.Java中三大特性(封装、继承、多态)02
2 继承 需要两个类才能实现继承的效果。 比如:类A 继承 类B A类 称为 子类 , 衍生类,派生类 B类 称为 父类,基类,超类 继承的作用 子类自动的拥有父类的所有属性和方法 (父类编写,子类不需要…...

AI为云游戏带来的革新及解决方案:深度技术剖析与未来展望
近期,科技巨头埃隆马斯克与热门国产游戏《黑神话:悟空》的互动,再次引发了公众对AI技术在游戏产业中应用的关注。马斯克,作为特斯拉和SpaceX的掌门人,不仅在科技领域引领风骚,其个人兴趣也广泛涉猎…...
集合是什么
1.是什么 集合(Collection)是Java语言中一个非常重要的概念,它是一组对象的容器,用于存储、检索和操作对象。在Java中,集合框架定义了一系列接口和实现类,用于处理不同类型的集合。 集合的概念 集合框架提…...

JavaDS —— 图
图的概念 图是由顶点集合以及顶点之间的关系组成的一种数据结构:G (V,E) 其中 V 表示的是顶点集合 : V { x | x 属于某个数据对象集} 是有穷非空集合 E 叫做边的集合 : E {(x, y) | x, y 属于 V} 或者 …...

魅思-视频管理系统 getOrderStatus SQL注入漏洞复现
0x01 产品简介 魅思-视频管理系统是一款集成了视频管理、用户管理、手机端应用封装等功能的综合性视频管理系统。该系统不仅以其强大的视频管理功能、灵活的用户管理机制、便捷的手机端应用封装功能以及高安全性和现代化的界面设计,成为了市场上备受关注的视频管理系统之一。…...
SOME/IP通信协议在汽车业务具体示例
标签:SOME/IP; SomeIP通信协议在汽车业务具体示例; SomeIP通信协议在汽车业务具体示例 SOME/IP(Scalable service-Oriented MiddlewarE over IP)协议被广泛应用于现代汽车的多个关键业务领域。SOME/IP协议特别适合需要…...

jupyter notebook添加环境/添加内核
参考: jupyter notebook添加环境/添加内核(超详细)_python_leoound-GitCode 开源社区 Jupyter Notebook 切换虚拟环境_jupyter 选择环境-CSDN博客 1.激活想添加的环境 conda activate pytorch39 2.下载核 conda install ipykernel 3.按照…...

建模杂谈系列256 规则函数化改造
说明 之前尝试用FastAPI来构造规则,碰到的问题是由于请求量过大(TPS > 1000), 从而导致微服务端口资源耗尽。所以现在的point是: 1 如何使用函数来替代微服务(同时要保留使用微服务的优点)2 进一步抽象并规范规则的执行3 等效合并规则的方法 内容 0 机制讨论…...
python实现冒泡排序的算法
冒泡排序是对数组里面两个相邻的数据进行比较并排序,最大的数会不断向后移动,因此叫冒泡排序。 冒泡排序的步骤: 1.首先对数组第一个数和第二个数进行比较,谁最小,谁排在前面 2.将第二个数与第三个数进行比较排序&a…...

爱玩游戏的弟弟,被人投资了100万
很多人说游戏是个害人的东西,尤其现在的青少年,被毒害得不浅,那还是因为大多数人对游戏本身了解得不够全面,只知道游戏是拿来玩,拿来消遣的,殊不知游戏里面还有大把捞金的机会。 我有个学员,我…...

Pandas_数据结构详解
1.创建DataFrame对象 概述 DataFrame是一个表格型的结构化数据结构,它含有一组或多组有序的列(Series),每列可以是不同的值类型(数值、字符串、布尔值等)。 DataFrame是Pandas中的最基本的数据结构对象&am…...
Leetcode 3287. Find the Maximum Sequence Value of Array
Leetcode 3287. Find the Maximum Sequence Value of Array 1. 解题思路2. 代码实现 题目链接:3287. Find the Maximum Sequence Value of Array 1. 解题思路 这一题我的思路比较暴力,就是求出每一个位置前后所有可能的长度为k的子序列的所有的或结果…...

python 山峦图
效果: 代码: import matplotlib.pyplot as plt import numpy as npdef mountain_plot(data_dict, colorsNone):if colors is None:colors get_colors_from_map(len(data_dict), "Spectral")x list(data_dict.keys())# Y轴位置y_positions …...

Open3D:3D数据处理与可视化的强大工具
创作不易,您的打赏、关注、点赞、收藏和转发是我坚持下去的动力! Open3D算法框架简介 Open3D是一个开源的3D数据处理库,旨在为3D数据提供高效、易用的计算和可视化工具。它支持多种3D数据格式,例如点云、网格、RGB-D图像等&…...

YOLOv8改进系列,YOLOv8的Neck替换成AFPN(CVPR 2023)
摘要 多尺度特征在物体检测任务中对编码具有尺度变化的物体非常重要。多尺度特征提取的常见策略是采用经典的自上而下和自下而上的特征金字塔网络。然而,这些方法存在特征信息丢失或退化的问题,影响了非相邻层次的融合效果。一种渐进式特征金字塔网络(AFPN),以支持非相邻…...

BitLocker硬盘加密的详细教程分享
硬盘加密是将数据转换为一种只有授权用户才能读取的形式。通过使用加密算法,硬盘上的数据在存储时被加密,只有输入正确的密钥或密码才能解密和访问这些数据。 硬盘加密的重要性 数据是现代社会的重要资产,保护这些数据免受非法访问和窃取至关…...

YOLOv8的GPU环境搭建方法
首先说明这个环境搭建教程是基于电脑已经安装好CUDA和CUDNN的情况下,去搭建能够正确运行YOLOv8代码的Pytorch的GPU版本。具体安装方法可见:最适合新手入门的CUDA、CUDNN、Pytorch安装教程_cuda安装-CSDN博客 第一步:需要在cmd中创建虚拟环境c…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...