当前位置: 首页 > news >正文

powerbi

 一. CALCULATE 和 FILTER

FILTER 返回的数据必须是表, 所以 可以 用在 新建表中, 不能直接用在度量值中其实 filter 相当于 用 外表字段 去进行筛选
不使用 filter, 只能使用本表字段 进行筛选,如下1, 只能使用 门店信息表的城市筛选,
表2,是用了filter, 门店信息表和区域信息表有关系的前提下, 进行筛选。CALCULATE(SUM('门店信息表'[门店标配人数]),[城市] = "镇江"
)  #本表字段 直接使用 列筛选#filter 将表作为筛选条件 ,返回对应的值(表和表之间必须存在关联)
#filter 返回的数据也是表类型#把营销一区 对应的门店 人数求和
CALCULATE(SUM('门店信息表'[店员标配人数]),FILTER('区域信息表','区域信息表'[区域] = "营销一区")
) #外表字段 使用filter筛选表

二. ALL 筛选器函数  谁在谁没用

# ALL 筛选器函数,清除指定 表(或列)的筛选过程, 谁在谁没用 # 对金额列 进行求和, 且 结果不受 门店ID 切片器的控制
计算金额 = CALCULATE(SUM('销售表'[金额]),ALL('销售表'[门店ID]))

三. ALLEXCEPT 筛选器函数   谁在谁有用

# 只受某列影响 ,清除其他表或者列 的筛选功能  ,allexcept 中指定的有用,其他都没用# ALLEXCEPT(表,表[字段])#对金额求和 ,只有产品ID 能进行 切片作用
计算金额 = CALCULATE(SUM('销售表'[金额]),ALLEXCEPT('销售表','销售表'[产品ID]))

四. ALLSELECTED    和all 类似   谁在谁没有

ALLSELECTED(表,表[字段])

五. related (将维度表中列 复制到事实表,就是将维度表中字段放入事实表)

# 维度表 指向  事实表    (关系中)

# 事实表:核心业务表# 将  
related('表'[表字段])这里是在 销售表中 新建列中 输入, 因为 related 只能在 事实表中 添加 维度表中的字段
列 = RELATED('门店信息表'[城市])

六. RELATEDTABLE:将事实表中的 列 放到 维度表

SUMX(RELATEDTABLE('表'),[字段])

 七. 日历函数

相关文章:

powerbi

一. CALCULATE 和 FILTER FILTER 返回的数据必须是表, 所以 可以 用在 新建表中, 不能直接用在度量值中其实 filter 相当于 用 外表字段 去进行筛选 不使用 filter, 只能使用本表字段 进行筛选,如下1, 只能使用 门店信…...

【Unity】检测鼠标点击位置是否有2D对象

在这里提供两种方案,一种是射线检测,另一种是非射线检测。 初始准备步骤: 创建2D对象(比如2D精灵)给要被检测的2D对象添加2D碰撞体(必须是2D碰撞体)创建一个空对象,再创建一个检测…...

Python学习——【2.1】if语句相关语法

文章目录 【2.1】if语句相关一、布尔类型和比较运算符(一)布尔类型(二)比较运算符 二、if语句的基本格式※、练习 三、if-else组合判断语句※、练习 四、if-elif-else多条件判断语句※、练习 五、判断语句的嵌套※、实战案例 【2.…...

机器学习--K-Means

K均值聚类 算法过程 K − m e a n s K-means K−means 是 聚类 c l u s t e r i n g clustering clustering 算法的一种,就是给你一坨东西,让你给他们分类: 我们的 K − m e a n s K-means K−means 大概是这样一个流程: 第一…...

模型训练时CPU和GPU大幅度波动——可能是数据的读入拖后腿

模型训练时CPU和GPU大幅度波动——可能是数据的加载拖后腿 问题 在进行猫狗大战分类任务时,发现模型训练时CPU和GPU大幅度波动,且模型训练速度很慢。 原因 ​ 初步分析可能是数据加载(包括数据的transform,我用了Resize&#…...

keep-alive的应用场景

...

【C++ Primer Plus习题】16.9

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: #include <iostream> #include <ctime> #include <v…...

Java入门:09.Java中三大特性(封装、继承、多态)02

2 继承 需要两个类才能实现继承的效果。 比如&#xff1a;类A 继承 类B A类 称为 子类 &#xff0c; 衍生类&#xff0c;派生类 B类 称为 父类&#xff0c;基类&#xff0c;超类 继承的作用 子类自动的拥有父类的所有属性和方法 &#xff08;父类编写&#xff0c;子类不需要…...

AI为云游戏带来的革新及解决方案:深度技术剖析与未来展望

近期&#xff0c;科技巨头埃隆马斯克与热门国产游戏《黑神话&#xff1a;悟空》的互动&#xff0c;再次引发了公众对AI技术在游戏产业中应用的关注。马斯克&#xff0c;作为特斯拉和SpaceX的掌门人&#xff0c;不仅在科技领域引领风骚&#xff0c;其个人兴趣也广泛涉猎&#xf…...

集合是什么

1.是什么 集合&#xff08;Collection&#xff09;是Java语言中一个非常重要的概念&#xff0c;它是一组对象的容器&#xff0c;用于存储、检索和操作对象。在Java中&#xff0c;集合框架定义了一系列接口和实现类&#xff0c;用于处理不同类型的集合。 集合的概念 集合框架提…...

JavaDS —— 图

图的概念 图是由顶点集合以及顶点之间的关系组成的一种数据结构&#xff1a;G &#xff08;V&#xff0c;E&#xff09; 其中 V 表示的是顶点集合 &#xff1a; V { x | x 属于某个数据对象集} 是有穷非空集合 E 叫做边的集合 &#xff1a; E {(x, y) | x, y 属于 V} 或者 …...

魅思-视频管理系统 getOrderStatus SQL注入漏洞复现

0x01 产品简介 魅思-视频管理系统是一款集成了视频管理、用户管理、手机端应用封装等功能的综合性视频管理系统。该系统不仅以其强大的视频管理功能、灵活的用户管理机制、便捷的手机端应用封装功能以及高安全性和现代化的界面设计,成为了市场上备受关注的视频管理系统之一。…...

SOME/IP通信协议在汽车业务具体示例

标签&#xff1a;SOME/IP&#xff1b; SomeIP通信协议在汽车业务具体示例&#xff1b; SomeIP通信协议在汽车业务具体示例 SOME/IP&#xff08;Scalable service-Oriented MiddlewarE over IP&#xff09;协议被广泛应用于现代汽车的多个关键业务领域。SOME/IP协议特别适合需要…...

jupyter notebook添加环境/添加内核

参考&#xff1a; jupyter notebook添加环境/添加内核&#xff08;超详细&#xff09;_python_leoound-GitCode 开源社区 Jupyter Notebook 切换虚拟环境_jupyter 选择环境-CSDN博客 1.激活想添加的环境 conda activate pytorch39 2.下载核 conda install ipykernel 3.按照…...

建模杂谈系列256 规则函数化改造

说明 之前尝试用FastAPI来构造规则&#xff0c;碰到的问题是由于请求量过大(TPS > 1000), 从而导致微服务端口资源耗尽。所以现在的point是: 1 如何使用函数来替代微服务(同时要保留使用微服务的优点)2 进一步抽象并规范规则的执行3 等效合并规则的方法 内容 0 机制讨论…...

python实现冒泡排序的算法

冒泡排序是对数组里面两个相邻的数据进行比较并排序&#xff0c;最大的数会不断向后移动&#xff0c;因此叫冒泡排序。 冒泡排序的步骤&#xff1a; 1.首先对数组第一个数和第二个数进行比较&#xff0c;谁最小&#xff0c;谁排在前面 2.将第二个数与第三个数进行比较排序&a…...

爱玩游戏的弟弟,被人投资了100万

很多人说游戏是个害人的东西&#xff0c;尤其现在的青少年&#xff0c;被毒害得不浅&#xff0c;那还是因为大多数人对游戏本身了解得不够全面&#xff0c;只知道游戏是拿来玩&#xff0c;拿来消遣的&#xff0c;殊不知游戏里面还有大把捞金的机会。 我有个学员&#xff0c;我…...

Pandas_数据结构详解

1.创建DataFrame对象 概述 DataFrame是一个表格型的结构化数据结构&#xff0c;它含有一组或多组有序的列&#xff08;Series&#xff09;&#xff0c;每列可以是不同的值类型&#xff08;数值、字符串、布尔值等&#xff09;。 DataFrame是Pandas中的最基本的数据结构对象&am…...

Leetcode 3287. Find the Maximum Sequence Value of Array

Leetcode 3287. Find the Maximum Sequence Value of Array 1. 解题思路2. 代码实现 题目链接&#xff1a;3287. Find the Maximum Sequence Value of Array 1. 解题思路 这一题我的思路比较暴力&#xff0c;就是求出每一个位置前后所有可能的长度为k的子序列的所有的或结果…...

python 山峦图

效果&#xff1a; 代码&#xff1a; import matplotlib.pyplot as plt import numpy as npdef mountain_plot(data_dict, colorsNone):if colors is None:colors get_colors_from_map(len(data_dict), "Spectral")x list(data_dict.keys())# Y轴位置y_positions …...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...