当前位置: 首页 > news >正文

深入理解Lucene:开源全文搜索引擎

目录

引言

Lucene的核心概念

索引

分析器

存储

Lucene的工作流程

创建索引

搜索索引

Lucene核心技术

倒排索引

排序算法

索引压缩与合并

并发控制与实时更新

结论


 

引言

随着互联网的飞速发展,信息量呈指数级增长,如何有效地管理和检索这些信息成为了一个重要的课题。Lucene作为一款高性能的全文搜索引擎库,因其灵活性和强大的功能而受到了广泛的关注。本文将深入探讨Lucene的工作原理和技术细节,以便更好地理解和利用这一强大的工具。

Lucene的核心概念

索引

索引是Lucene的核心,它将文档中的关键词映射到文档ID上,以便快速查找。在创建索引时,Lucene会对输入的文档进行分析,提取出有意义的词,并将它们存入倒排索引表中。倒排索引表是一种特殊的数据结构,它记录了包含特定单词的所有文档列表,这样当用户进行搜索时,系统只需要查询该单词对应的文档列表即可,大大提高了搜索效率。

分析器

分析器负责对输入文本进行分词处理,将长段落分解成一个个独立的词汇单元,称为术语(Term)。分析器通常包括以下步骤:

  • 分词:将文本切分成单独的词汇单元。
  • 去噪:移除一些无意义的词汇,例如“the”、“is”等。
  • 标准化:将词汇转换成统一的形式,比如小写化。
  • 词干提取:将词汇还原为其基本形式,比如将“running”转换为“run”。

存储

Lucene提供的存储模块允许开发者存储非结构化的数据。虽然这并不是搜索功能的一部分,但它可以用来存储原始文档,以便在搜索结果中展示完整的文档内容。

Lucene的工作流程

创建索引

创建索引的过程涉及以下几个步骤:

  1. 文档准备:准备需要索引的文档集合。
  2. 文档分析:使用分析器对文档进行预处理。
  3. 索引写入:将处理后的文档写入索引中。
  4. 索引优化:合并多个索引文件,减少磁盘空间占用并提高搜索速度。

搜索索引

搜索索引包括以下主要步骤:

  1. 查询解析:将用户输入的查询字符串解析成查询对象。
  2. 查询执行:执行查询对象,从索引中检索相关文档。
  3. 结果排序:根据相关度对检索到的文档进行排序。
  4. 结果展示:返回排序后的文档列表给用户。

Lucene核心技术

倒排索引

倒排索引是一种数据结构,它将单词映射到包含这些单词的所有文档。这种索引方式非常适合全文搜索,因为查询时只需找到包含指定关键字的所有文档即可。

排序算法

Lucene使用TF-IDF(Term Frequency-Inverse Document Frequency)算法来计算文档的相关度。TF-IDF是一个衡量词语在文档中的重要程度的指标,它由两个部分组成:

  • TF(Term Frequency):词语在文档中出现的频率。
  • IDF(Inverse Document Frequency):所有文档中包含该词语的文档数量的逆比例。

索引压缩与合并

为了提高性能,Lucene会定期对索引文件进行压缩和合并操作,以减少磁盘上的碎片,同时优化搜索速度。

并发控制与实时更新

Lucene支持并发索引更新和查询操作,通过使用多版本并发控制(MVCC)技术来确保数据的一致性和完整性。此外,Lucene还支持实时更新索引,使得新添加或删除的文档可以立即生效。

结论

Lucene以其简单易用的API、高性能和高度可定制性成为了全文搜索领域的佼佼者。通过本文的介绍,我们深入了解了Lucene的工作原理以及其实现全文搜索的关键技术。掌握这些知识可以帮助开发者更好地利用Lucene来构建自己的搜索引擎应用。

相关文章:

深入理解Lucene:开源全文搜索引擎

目录 引言 Lucene的核心概念 索引 分析器 存储 Lucene的工作流程 创建索引 搜索索引 Lucene核心技术 倒排索引 排序算法 索引压缩与合并 并发控制与实时更新 结论 引言 随着互联网的飞速发展,信息量呈指数级增长,如何有效地管理和检索这些…...

Qt中pro项目文件配置介绍

Qt中,工程文件是以.pro后缀的文件,主要用以包含Qt模块,代码文件,依赖库,以及对项目的一些属性进行配置。 具体看个例子: #这块是添加Qt模块 #.pro文件中使用#号作为注释 QT core gui #QT webengine…...

相亲交友中的用户画像构建方法探讨

随着互联网技术的发展,相亲交友平台成为现代人寻找伴侣的重要渠道之一。在这一过程中,如何精准地为用户推荐合适的对象成为了平台能否成功的关键。本文旨在探讨相亲交友平台中用户画像的构建方法,并分析其对于提高匹配度的重要性(…...

总结

本来想把这个写完再写总结的,但是我发现卡了,明天去问问别人。 今天写上传个文件,没上传好,找到问题了,但是还不知道怎么改,我发给前端成功了,刚刚看了下好像是这里的问题,但是不是…...

C# 开发教程-入门基础

1.C# 简介、环境,程序结构 2.C# 基本语法,变量,控制局域,数据类型,类型转换 3.C# 数组、 循环,Linq 4.C# 类,封装,方法 5.C# 枚举、字符串 6.C# 面相对象,继承&#xff0…...

Windows上,使用远程桌面连接Ubuntu

要在 Ubuntu 上设置公网 IP 并通过 Windows 远程桌面连接到 Ubuntu,你需要完成以下步骤: 设置 Ubuntu 公网 IP: 确保你的 Ubuntu 服务器已经配置了一个公网 IP 地址。 你可以通过云服务提供商(如 AWS、Azure、Google Cloud&#…...

SharePoint Online 计划 1 部署方案

概述 SharePoint Online 是 Microsoft 365 的一部分,为组织提供了一种高效、灵活的协作平台。SharePoint Online 计划 1(Plan 1)尤其适用于中小型企业,提供了基本的文档管理和协作功能。本文将详细介绍如何部署 SharePoint Online 计划 1,并探讨其配置、管理和最佳实践。…...

kubernetes存储之GlusterFS(GlusterFS for Kubernetes Storage)

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:Linux运维老纪的首页…...

网络安全等保培训 ppt

网络安全等级保护怎么做?...

开关磁阻电机(SRM)系统的matlab性能仿真与分析

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 SRM的基本结构 4.2 SRM的电磁关系 4.3 SRM的输出力矩 5.完整工程文件 1.课题概述 开关磁阻电机(SRM)系统的matlab性能仿真与分析,对比平均转矩vs相电流,转矩脉动vs相电流&a…...

最新动态一致的文生视频大模型FancyVideo部署

FancyVideo是一个由360AI团队和中山大学联合开发并开源的视频生成模型。 FancyVideo的创新之处在于它能够实现帧特定的文本指导,使得生成的视频既动态又具有一致性。 FancyVideo模型通过精心设计的跨帧文本引导模块(Cross-frame Textual Guidance Modu…...

茴香豆:企业级知识问答工具实践闯关任务

基础任务 在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手,并使用 Gradio 界面完成 2 轮问答(问题不可与教程重复,作业截图需包括 gradio 界面问题和茴香豆回答)。知识库可根据根据自己工作、学习或感兴趣的内容调…...

英飞凌 PSoC6 RT-Thread 评估板简介

概述 2023年,英飞凌(Infineon)联合 RT-Thread 发布了一款 PSoC™ 62 with CAPSENSE™ evaluation kit 开发板 (以下简称 PSoC 6 RTT 开发板),该开发套件默认内置 RT-Thread 物联网操作系统。PSoC 6 RTT 开…...

深度学习笔记(8)预训练模型

深度学习笔记(8)预训练模型 文章目录 深度学习笔记(8)预训练模型一、预训练模型构建一、微调模型,训练自己的数据1.导入数据集2.数据集处理方法3.完形填空训练 使用分词器将文本转换为模型的输入格式参数 return_tenso…...

C#事件的用法

前言 在C#中,事件(Event)可以实现当类内部发生某些特定的事情时,它可以通知其他类或对象。事件是基于委托(Delegate)的,委托是一种类型安全的函数指针,它定义了方法的类型&#xff…...

金砖软件测试赛项之Jmeter如何录制脚本!

一、简介 Apache JMeter 是一款开源的性能测试工具,用于测试各种服务的负载能力,包括Web应用、数据库、FTP服务器等。它可以模拟多种用户行为,生成负载以评估系统的性能和稳定性。 JMeter 的主要特点: 图形用户界面:…...

docker-squash镜像压缩

docker-squash 和 docker export docker load 的原理和效果有一些相似之处,但它们的工作方式和适用场景有所不同。 docker-squash docker-squash 是一个工具,它通过分析 Docker 镜像的层(layers)并将其压缩成更少的层来减小镜像…...

Vue3快速入门+axios的异步请求(基础使用)

学习Vue之前先要学习htmlcssjs的基础使用 Vue其实是js的框架 常用到的Vue指令包括vue-on,vue-for,vue-blind,vue-if&vue-show,v-modul vue的基础模板&#xff1a; <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8&…...

VM16安装macOS11

注意&#xff1a; 本文内容于 2024-09-17 12:08:24 创建&#xff0c;可能不会在此平台上进行更新。如果您希望查看最新版本或更多相关内容&#xff0c;请访问原文地址&#xff1a;VM16安装macOS11。感谢您的关注与支持&#xff01; 使用 Vmware Workstation Pro 16 安装 macOS…...

自定义复杂AntV/G6案例

一、效果图 二、源码 /** * * Author: me * CreatDate: 2024-08-22 * * Description: 复杂G6案例 * */ <template><div class"moreG6-wapper"><div id"graphContainer" ref"graphRef" class"graph-content"></d…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...