实战OpenCV之图像阈值处理
基础入门
图像阈值处理是一种二值化技术,它基于预设的阈值,可以将图像中的像素分为两大类:一大类是背景,另一大类是前景或目标对象。这个过程涉及将图像中的每个像素值与阈值进行比较,并根据比较结果决定保留原始值还是替换为新值,新值通常是二值化后的0或255。
OpenCV提供了cv::threshold()函数,以实现基本的阈值处理。
double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type);
各个参数的含义如下。
src:输入的单通道图像,通常为灰度图像。
dst:输出图像,与src尺寸相同,类型根据type参数确定。
thresh:阈值。
maxval:当像素值超过阈值时,设置的新值。
type:阈值类型,常见的取值如下。
cv::THRESH_BINARY:大于阈值设为maxval,否则设为0。
cv::THRESH_BINARY_INV:小于阈值设为maxval,否则设为0。
cv::THRESH_TRUNC:大于阈值的像素设为阈值,其余不变。
cv::THRESH_TOZERO:小于阈值的像素设为0,其余不变。
cv::THRESH_TOZERO_INV:大于阈值的像素设为0,其余不变。
实战解析
下面的实战代码完成了一个基本的图像处理任务 —— 将一张灰度图像转换成二值图像。
首先,我们创建一个Mat类型的变量img,并尝试使用imread函数读取图片,通过参数IMREAD_GRAYSCALE指定以灰度模式加载。接下来,我们调用threshold函数对灰度图像img进行阈值处理,将其转换为二值图像。这里,阈值被设置为127,阈值类型为THRESH_BINARY。这意味着,所有像素值大于或等于127的将被设为最大值255(代表白色),其余设为0(代表黑色)。最后,分别使用imshow函数显示原始的灰度图像和经过二值化处理后的图像。
#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat img = imread("OpenCV.png", IMREAD_GRAYSCALE);if (img.empty()){cout << "Can not open or find the image" << endl;return -1;}Mat binaryImg;threshold(img, binaryImg, 127, 255, THRESH_BINARY);imshow("Original Image", img);imshow("Binary Image", binaryImg);waitKey(0);return 0;
}
执行上面的代码,运行效果可参考下图。
在实际应用中,阈值的选择往往直接影响到后续处理的效果,特别是对于光照变化大、噪声较多的图像。此时,可以使用下面的自适应阈值处理方法。它能够根据图像局部特性动态调整阈值,特别适合于处理光照不均匀的场景,比如:车牌识别、文档扫描等应用。
自适应阈值处理
自适应阈值处理是一种更智能的图像二值化方法,它不像普通阈值处理那样使用单一固定阈值,而是针对图像的不同区域或区块计算各自的阈值,以适应局部的亮度变化。这对于光照不均匀的图像特别有效,能够更好地保留图像细节。
在OpenCV中,自适应阈值处理使用cv::adaptiveThreshold()函数,其声明如下。
void adaptiveThreshold(InputArray src, OutputArray dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C);
其参数含义与cv::threshold()类似,额外参数的含义如下。
adaptiveMethod:自适应方法,常见取值有cv::ADAPTIVE_THRESH_MEAN_C(均值)和cv::ADAPTIVE_THRESH_GAUSSIAN_C(高斯加权)。
blockSize:用于计算局部阈值的邻域大小,通常选择奇数值,以便有明确的中心像素点。
C:常数项,从计算出的局部阈值中减去或加上这个常数,用于调整最终的阈值。
下面的实战代码演示了使用adaptiveThreshold函数进行自适应阈值处理的情形。
#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat img = imread("OpenCV.png", IMREAD_GRAYSCALE);if (img.empty()){cout << "Can not open or find the image" << endl;return -1;}// 自适应阈值处理Mat adaptiveThreshImg;adaptiveThreshold(img, adaptiveThreshImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 11, 2);imshow("Original Image", img);imshow("Adaptive Threshold Image", adaptiveThreshImg);waitKey(0);return 0;
}
执行上面的代码,运行效果可参考下图。可以看到,经过自适应阈值处理后,图像的轮廓变得格外清晰。自适应阈值处理方法适用于复杂光照条件下图像的预处理,有助于提高后续图像分析和识别的准确率。
相关文章:

实战OpenCV之图像阈值处理
基础入门 图像阈值处理是一种二值化技术,它基于预设的阈值,可以将图像中的像素分为两大类:一大类是背景,另一大类是前景或目标对象。这个过程涉及将图像中的每个像素值与阈值进行比较,并根据比较结果决定保留原始值还是…...

登录后继续执行方法
场景 点击按钮,检测到未登录,直接跳转到登录页,登录成功后,返回页面继续执行刚才的点击事件 思路 在跳转时用一个队列存储该事件,登录成功后执行队列里的事件 队列 class Queue {constructor() {this.task []}cl…...

JVM-类加载器的双亲委派模型详解
JVM中存在三个默认的类加载器: BootstrapClassLoaderExtClassLoaderAppClassLoader AppClassLoader的父加载器是ExtClassLoader,ExtClassLoader的父加载器是 BootstrapClassLoader。 它们之间的关系是:AppClassLoader->ExtClassLoader-&…...

【计算机基础题目】Linux系统中文件权限 字母权限和数字权限的相互转换
创作日志: 很久之前对这个略有了解,但是现在完全忘记了,看到这类题目一脸懵逼,现在系统复习下。 1、权限的数字表示(3位) 在Linux系统中,文件权限由一个三位的八进制数表示,每一位代…...

VRRP协议原理
目录 VRRP概述 VRRP产生背景 VRRP介绍 VRRP相关概念 VRRP报文 VRRP的三种状态 VRRP工作原理 优先级和抢占 VRRP接口跟踪 VRRP概述 VRRP产生背景 通常同一网段内的所有主机都会配置相同的网关,以访问外部网络 当唯一的网关设备发生故障时,所有主…...

Dockerfile自定义制作镜像,其中10个指令的作用分析
docker容器中 做镜像是重要的技能。 docker commit只能制作比较简单的镜像, 要制作比较完善的镜像, 自定义程度比较高的, 就需要用到dockerfile dockerfile可以回溯历史 动态生成镜像。 FROM是基础镜像 CMD是在容器创建的时候默认的启动命令 …...

Linux6-vi/vim
1.vi与vim vi是Linux操作系统下的标准编辑器,类似Windows下的记事本 vim是vi的升级版,包括vi的所有功能,而且支持shell 2.vi/vim下的三种模式 vi/vim有三种模式:命令模式,插入模式和底行模式 命令模式:…...

2012年408考研真题-数据结构
8.【2012统考真题】求整数n(n≥0)的阶乘的算法如下,其时间复杂度是()。 int fact(int n){ if(n<1) return 1; return n*fact (n-1); } A. O(log2n) B. O(n) C. O(nlog2n) D. O(n^2) 解析: 观察代码,我们不…...

【北京迅为】《STM32MP157开发板使用手册》- 第四十章 二值信号量实验
iTOP-STM32MP157开发板采用ST推出的双核cortex-A7单核cortex-M4异构处理器,既可用Linux、又可以用于STM32单片机开发。开发板采用核心板底板结构,主频650M、1G内存、8G存储,核心板采用工业级板对板连接器,高可靠,牢固耐…...

Docker UI强大之处?
DockerUI是一款由国内开发者打造的优秀Docker可视化管理工具。它拥有简洁直观的用户界面,使得Docker主机管理、集群管理和任务编排变得轻松简单。DockerUI不仅能展示资源利用率、系统信息和更新日志,还提供了镜像管理功能,帮助用户高效清理中…...

前端面试题——token安全问题处理与大数据列表展示
1.长时间保存token问题 长时间保存Token涉及多个方面的问题,包括安全性、性能、以及Token的管理策略等。以下是对长时间保存Token问题的详细分析: 一、安全性问题 Token泄露风险: Token是用户身份验证的凭证,如果长时间保存且未…...

Flask项目入门和视图
1、第一个项目的结构 以示例代码中的入口文件app.py为例子 (1)引入Flask以及创建Flask对象 from flask import Flask app Flask(__name__)(2) 路由route 视图函数 app.route(/index/) def hello_world():# 响应:…...

深入理解Lucene:开源全文搜索引擎
目录 引言 Lucene的核心概念 索引 分析器 存储 Lucene的工作流程 创建索引 搜索索引 Lucene核心技术 倒排索引 排序算法 索引压缩与合并 并发控制与实时更新 结论 引言 随着互联网的飞速发展,信息量呈指数级增长,如何有效地管理和检索这些…...

Qt中pro项目文件配置介绍
Qt中,工程文件是以.pro后缀的文件,主要用以包含Qt模块,代码文件,依赖库,以及对项目的一些属性进行配置。 具体看个例子: #这块是添加Qt模块 #.pro文件中使用#号作为注释 QT core gui #QT webengine…...

相亲交友中的用户画像构建方法探讨
随着互联网技术的发展,相亲交友平台成为现代人寻找伴侣的重要渠道之一。在这一过程中,如何精准地为用户推荐合适的对象成为了平台能否成功的关键。本文旨在探讨相亲交友平台中用户画像的构建方法,并分析其对于提高匹配度的重要性(…...

总结
本来想把这个写完再写总结的,但是我发现卡了,明天去问问别人。 今天写上传个文件,没上传好,找到问题了,但是还不知道怎么改,我发给前端成功了,刚刚看了下好像是这里的问题,但是不是…...

C# 开发教程-入门基础
1.C# 简介、环境,程序结构 2.C# 基本语法,变量,控制局域,数据类型,类型转换 3.C# 数组、 循环,Linq 4.C# 类,封装,方法 5.C# 枚举、字符串 6.C# 面相对象,继承࿰…...

Windows上,使用远程桌面连接Ubuntu
要在 Ubuntu 上设置公网 IP 并通过 Windows 远程桌面连接到 Ubuntu,你需要完成以下步骤: 设置 Ubuntu 公网 IP: 确保你的 Ubuntu 服务器已经配置了一个公网 IP 地址。 你可以通过云服务提供商(如 AWS、Azure、Google Cloud&#…...

SharePoint Online 计划 1 部署方案
概述 SharePoint Online 是 Microsoft 365 的一部分,为组织提供了一种高效、灵活的协作平台。SharePoint Online 计划 1(Plan 1)尤其适用于中小型企业,提供了基本的文档管理和协作功能。本文将详细介绍如何部署 SharePoint Online 计划 1,并探讨其配置、管理和最佳实践。…...

kubernetes存储之GlusterFS(GlusterFS for Kubernetes Storage)
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:Linux运维老纪的首页…...

网络安全等保培训 ppt
网络安全等级保护怎么做?...

开关磁阻电机(SRM)系统的matlab性能仿真与分析
目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 SRM的基本结构 4.2 SRM的电磁关系 4.3 SRM的输出力矩 5.完整工程文件 1.课题概述 开关磁阻电机(SRM)系统的matlab性能仿真与分析,对比平均转矩vs相电流,转矩脉动vs相电流&a…...

最新动态一致的文生视频大模型FancyVideo部署
FancyVideo是一个由360AI团队和中山大学联合开发并开源的视频生成模型。 FancyVideo的创新之处在于它能够实现帧特定的文本指导,使得生成的视频既动态又具有一致性。 FancyVideo模型通过精心设计的跨帧文本引导模块(Cross-frame Textual Guidance Modu…...

茴香豆:企业级知识问答工具实践闯关任务
基础任务 在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手,并使用 Gradio 界面完成 2 轮问答(问题不可与教程重复,作业截图需包括 gradio 界面问题和茴香豆回答)。知识库可根据根据自己工作、学习或感兴趣的内容调…...

英飞凌 PSoC6 RT-Thread 评估板简介
概述 2023年,英飞凌(Infineon)联合 RT-Thread 发布了一款 PSoC™ 62 with CAPSENSE™ evaluation kit 开发板 (以下简称 PSoC 6 RTT 开发板),该开发套件默认内置 RT-Thread 物联网操作系统。PSoC 6 RTT 开…...

深度学习笔记(8)预训练模型
深度学习笔记(8)预训练模型 文章目录 深度学习笔记(8)预训练模型一、预训练模型构建一、微调模型,训练自己的数据1.导入数据集2.数据集处理方法3.完形填空训练 使用分词器将文本转换为模型的输入格式参数 return_tenso…...

C#事件的用法
前言 在C#中,事件(Event)可以实现当类内部发生某些特定的事情时,它可以通知其他类或对象。事件是基于委托(Delegate)的,委托是一种类型安全的函数指针,它定义了方法的类型ÿ…...

金砖软件测试赛项之Jmeter如何录制脚本!
一、简介 Apache JMeter 是一款开源的性能测试工具,用于测试各种服务的负载能力,包括Web应用、数据库、FTP服务器等。它可以模拟多种用户行为,生成负载以评估系统的性能和稳定性。 JMeter 的主要特点: 图形用户界面:…...

docker-squash镜像压缩
docker-squash 和 docker export docker load 的原理和效果有一些相似之处,但它们的工作方式和适用场景有所不同。 docker-squash docker-squash 是一个工具,它通过分析 Docker 镜像的层(layers)并将其压缩成更少的层来减小镜像…...

Vue3快速入门+axios的异步请求(基础使用)
学习Vue之前先要学习htmlcssjs的基础使用 Vue其实是js的框架 常用到的Vue指令包括vue-on,vue-for,vue-blind,vue-if&vue-show,v-modul vue的基础模板: <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8&…...