实战OpenCV之图像阈值处理
基础入门
图像阈值处理是一种二值化技术,它基于预设的阈值,可以将图像中的像素分为两大类:一大类是背景,另一大类是前景或目标对象。这个过程涉及将图像中的每个像素值与阈值进行比较,并根据比较结果决定保留原始值还是替换为新值,新值通常是二值化后的0或255。
OpenCV提供了cv::threshold()函数,以实现基本的阈值处理。
double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type);
各个参数的含义如下。
src:输入的单通道图像,通常为灰度图像。
dst:输出图像,与src尺寸相同,类型根据type参数确定。
thresh:阈值。
maxval:当像素值超过阈值时,设置的新值。
type:阈值类型,常见的取值如下。
cv::THRESH_BINARY:大于阈值设为maxval,否则设为0。
cv::THRESH_BINARY_INV:小于阈值设为maxval,否则设为0。
cv::THRESH_TRUNC:大于阈值的像素设为阈值,其余不变。
cv::THRESH_TOZERO:小于阈值的像素设为0,其余不变。
cv::THRESH_TOZERO_INV:大于阈值的像素设为0,其余不变。
实战解析
下面的实战代码完成了一个基本的图像处理任务 —— 将一张灰度图像转换成二值图像。
首先,我们创建一个Mat类型的变量img,并尝试使用imread函数读取图片,通过参数IMREAD_GRAYSCALE指定以灰度模式加载。接下来,我们调用threshold函数对灰度图像img进行阈值处理,将其转换为二值图像。这里,阈值被设置为127,阈值类型为THRESH_BINARY。这意味着,所有像素值大于或等于127的将被设为最大值255(代表白色),其余设为0(代表黑色)。最后,分别使用imshow函数显示原始的灰度图像和经过二值化处理后的图像。
#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat img = imread("OpenCV.png", IMREAD_GRAYSCALE);if (img.empty()){cout << "Can not open or find the image" << endl;return -1;}Mat binaryImg;threshold(img, binaryImg, 127, 255, THRESH_BINARY);imshow("Original Image", img);imshow("Binary Image", binaryImg);waitKey(0);return 0;
}
执行上面的代码,运行效果可参考下图。

在实际应用中,阈值的选择往往直接影响到后续处理的效果,特别是对于光照变化大、噪声较多的图像。此时,可以使用下面的自适应阈值处理方法。它能够根据图像局部特性动态调整阈值,特别适合于处理光照不均匀的场景,比如:车牌识别、文档扫描等应用。
自适应阈值处理
自适应阈值处理是一种更智能的图像二值化方法,它不像普通阈值处理那样使用单一固定阈值,而是针对图像的不同区域或区块计算各自的阈值,以适应局部的亮度变化。这对于光照不均匀的图像特别有效,能够更好地保留图像细节。
在OpenCV中,自适应阈值处理使用cv::adaptiveThreshold()函数,其声明如下。
void adaptiveThreshold(InputArray src, OutputArray dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C);
其参数含义与cv::threshold()类似,额外参数的含义如下。
adaptiveMethod:自适应方法,常见取值有cv::ADAPTIVE_THRESH_MEAN_C(均值)和cv::ADAPTIVE_THRESH_GAUSSIAN_C(高斯加权)。
blockSize:用于计算局部阈值的邻域大小,通常选择奇数值,以便有明确的中心像素点。
C:常数项,从计算出的局部阈值中减去或加上这个常数,用于调整最终的阈值。
下面的实战代码演示了使用adaptiveThreshold函数进行自适应阈值处理的情形。
#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;int main()
{Mat img = imread("OpenCV.png", IMREAD_GRAYSCALE);if (img.empty()){cout << "Can not open or find the image" << endl;return -1;}// 自适应阈值处理Mat adaptiveThreshImg;adaptiveThreshold(img, adaptiveThreshImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 11, 2);imshow("Original Image", img);imshow("Adaptive Threshold Image", adaptiveThreshImg);waitKey(0);return 0;
}
执行上面的代码,运行效果可参考下图。可以看到,经过自适应阈值处理后,图像的轮廓变得格外清晰。自适应阈值处理方法适用于复杂光照条件下图像的预处理,有助于提高后续图像分析和识别的准确率。

相关文章:
实战OpenCV之图像阈值处理
基础入门 图像阈值处理是一种二值化技术,它基于预设的阈值,可以将图像中的像素分为两大类:一大类是背景,另一大类是前景或目标对象。这个过程涉及将图像中的每个像素值与阈值进行比较,并根据比较结果决定保留原始值还是…...
登录后继续执行方法
场景 点击按钮,检测到未登录,直接跳转到登录页,登录成功后,返回页面继续执行刚才的点击事件 思路 在跳转时用一个队列存储该事件,登录成功后执行队列里的事件 队列 class Queue {constructor() {this.task []}cl…...
JVM-类加载器的双亲委派模型详解
JVM中存在三个默认的类加载器: BootstrapClassLoaderExtClassLoaderAppClassLoader AppClassLoader的父加载器是ExtClassLoader,ExtClassLoader的父加载器是 BootstrapClassLoader。 它们之间的关系是:AppClassLoader->ExtClassLoader-&…...
【计算机基础题目】Linux系统中文件权限 字母权限和数字权限的相互转换
创作日志: 很久之前对这个略有了解,但是现在完全忘记了,看到这类题目一脸懵逼,现在系统复习下。 1、权限的数字表示(3位) 在Linux系统中,文件权限由一个三位的八进制数表示,每一位代…...
VRRP协议原理
目录 VRRP概述 VRRP产生背景 VRRP介绍 VRRP相关概念 VRRP报文 VRRP的三种状态 VRRP工作原理 优先级和抢占 VRRP接口跟踪 VRRP概述 VRRP产生背景 通常同一网段内的所有主机都会配置相同的网关,以访问外部网络 当唯一的网关设备发生故障时,所有主…...
Dockerfile自定义制作镜像,其中10个指令的作用分析
docker容器中 做镜像是重要的技能。 docker commit只能制作比较简单的镜像, 要制作比较完善的镜像, 自定义程度比较高的, 就需要用到dockerfile dockerfile可以回溯历史 动态生成镜像。 FROM是基础镜像 CMD是在容器创建的时候默认的启动命令 …...
Linux6-vi/vim
1.vi与vim vi是Linux操作系统下的标准编辑器,类似Windows下的记事本 vim是vi的升级版,包括vi的所有功能,而且支持shell 2.vi/vim下的三种模式 vi/vim有三种模式:命令模式,插入模式和底行模式 命令模式:…...
2012年408考研真题-数据结构
8.【2012统考真题】求整数n(n≥0)的阶乘的算法如下,其时间复杂度是()。 int fact(int n){ if(n<1) return 1; return n*fact (n-1); } A. O(log2n) B. O(n) C. O(nlog2n) D. O(n^2) 解析: 观察代码,我们不…...
【北京迅为】《STM32MP157开发板使用手册》- 第四十章 二值信号量实验
iTOP-STM32MP157开发板采用ST推出的双核cortex-A7单核cortex-M4异构处理器,既可用Linux、又可以用于STM32单片机开发。开发板采用核心板底板结构,主频650M、1G内存、8G存储,核心板采用工业级板对板连接器,高可靠,牢固耐…...
Docker UI强大之处?
DockerUI是一款由国内开发者打造的优秀Docker可视化管理工具。它拥有简洁直观的用户界面,使得Docker主机管理、集群管理和任务编排变得轻松简单。DockerUI不仅能展示资源利用率、系统信息和更新日志,还提供了镜像管理功能,帮助用户高效清理中…...
前端面试题——token安全问题处理与大数据列表展示
1.长时间保存token问题 长时间保存Token涉及多个方面的问题,包括安全性、性能、以及Token的管理策略等。以下是对长时间保存Token问题的详细分析: 一、安全性问题 Token泄露风险: Token是用户身份验证的凭证,如果长时间保存且未…...
Flask项目入门和视图
1、第一个项目的结构 以示例代码中的入口文件app.py为例子 (1)引入Flask以及创建Flask对象 from flask import Flask app Flask(__name__)(2) 路由route 视图函数 app.route(/index/) def hello_world():# 响应:…...
深入理解Lucene:开源全文搜索引擎
目录 引言 Lucene的核心概念 索引 分析器 存储 Lucene的工作流程 创建索引 搜索索引 Lucene核心技术 倒排索引 排序算法 索引压缩与合并 并发控制与实时更新 结论 引言 随着互联网的飞速发展,信息量呈指数级增长,如何有效地管理和检索这些…...
Qt中pro项目文件配置介绍
Qt中,工程文件是以.pro后缀的文件,主要用以包含Qt模块,代码文件,依赖库,以及对项目的一些属性进行配置。 具体看个例子: #这块是添加Qt模块 #.pro文件中使用#号作为注释 QT core gui #QT webengine…...
相亲交友中的用户画像构建方法探讨
随着互联网技术的发展,相亲交友平台成为现代人寻找伴侣的重要渠道之一。在这一过程中,如何精准地为用户推荐合适的对象成为了平台能否成功的关键。本文旨在探讨相亲交友平台中用户画像的构建方法,并分析其对于提高匹配度的重要性(…...
总结
本来想把这个写完再写总结的,但是我发现卡了,明天去问问别人。 今天写上传个文件,没上传好,找到问题了,但是还不知道怎么改,我发给前端成功了,刚刚看了下好像是这里的问题,但是不是…...
C# 开发教程-入门基础
1.C# 简介、环境,程序结构 2.C# 基本语法,变量,控制局域,数据类型,类型转换 3.C# 数组、 循环,Linq 4.C# 类,封装,方法 5.C# 枚举、字符串 6.C# 面相对象,继承࿰…...
Windows上,使用远程桌面连接Ubuntu
要在 Ubuntu 上设置公网 IP 并通过 Windows 远程桌面连接到 Ubuntu,你需要完成以下步骤: 设置 Ubuntu 公网 IP: 确保你的 Ubuntu 服务器已经配置了一个公网 IP 地址。 你可以通过云服务提供商(如 AWS、Azure、Google Cloud&#…...
SharePoint Online 计划 1 部署方案
概述 SharePoint Online 是 Microsoft 365 的一部分,为组织提供了一种高效、灵活的协作平台。SharePoint Online 计划 1(Plan 1)尤其适用于中小型企业,提供了基本的文档管理和协作功能。本文将详细介绍如何部署 SharePoint Online 计划 1,并探讨其配置、管理和最佳实践。…...
kubernetes存储之GlusterFS(GlusterFS for Kubernetes Storage)
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:Linux运维老纪的首页…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
