当前位置: 首页 > news >正文

深度学习计算

一、层和块
块可以描述单个层、多个层组成的组件或整个模型。
通过定义块,组装块,可以实现复杂的神经网络。
一个块可以由多个class组成。
其实就是 自己定义神经网络net,自己定义层的顺序和具体的init、 forward函数。
层和块的顺序由sequential处理。
eg:
class MLP( nn . Module): # 这里只要继承了就可以实例化为一个层
# 用模型参数声明层。这里,我们声明两个全连接的层
def __init__(self):
# 调用MLP的父类Module的构造函数来执行必要的参数初始化。 即hidden和out的参数会自动生成。
# 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
super().__init__()
self . hidden = nn.Linear( 20 , 256 )   # 隐藏层
self . out = nn.Linear( 256 , 10 )   # 输出层
# 定义模型的前向传播, 即如何根据输入X返回所需的模型输出
def forward(self, X):
# 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
return self.out(F.relu(self.hidden(X)))
&
自己定义网络中的层
一般是在init里定义层,在forward里定义参数的传递 即输出的内容
# 手搓一个sequential类
class MySequential(nn.Module):
def __init__(self, *args):
super().__init__()
for idx, module in enumerate(args):
# 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
# 变量_modules中。_module的类型是OrderedDict
            # _modules的优点是,在模块的参数初始化过程中,系统会在里面查找需要初始化参数的子块。
self._modules[str(idx)] = module
def forward(self, X):
# OrderedDict保证了按照成员添加的顺序遍历它们
for block in self._modules.values():
X = block(X)
return X
net = MySequential (nn.Linear( 20, 256 ), nn.ReLU(), nn.Linear( 256 , 10 ))
&
为了更强的灵活性,我们想将自己定义的块加入模型中。
class FixedHiddenMLP(nn.Module):
def __init__(self):
super().__init__()
# 不计算梯度的随机权重参数。因此其在训练期间保持不变
self.rand_weight = torch.rand((20, 20), requires_grad=False) # 需要一个常数参数时
self.linear = nn.Linear(20, 20)
def forward(self, X):
X = self.linear(X)
# 使用创建的常量参数以及relu和mm函数
X = F.relu(torch.mm(X, self.rand_weight) + 1)
# 复用全连接层。这相当于两个全连接层共享参数
X = self.linear(X)
class NestMLP(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
nn.Linear(64, 32), nn.ReLU())
self.linear = nn.Linear(32, 16)
def forward(self, X):
return self.linear(self.net(X)) #骚操作
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
二、保存模型参数
torch. save( net .state_dict(), 'mlp.params')    #保存参数
clone = MLP()
clone.load_state_dict(torch.load('mlp.params')) #复用参数
clone.eval()

相关文章:

深度学习计算

一、层和块 块可以描述单个层、多个层组成的组件或整个模型。 通过定义块,组装块,可以实现复杂的神经网络。 一个块可以由多个class组成。 其实就是 自己定义神经网络net,自己定义层的顺序和具体的init、 forward函数。 层和块的顺序由sequen…...

Hexo博客私有部署Twikoo评论系统并迁移评论记录(自定义邮件回复模板)

部署 之前一直使用的artalk,现在想改用Twikoo,采用私有部署的方式。 私有部署 (Docker) 端口可以根据实际情况进行修改 docker run --name twikoo -e TWIKOO_THROTTLE1000 -p 8100:8100 -v ${PWD}/data:/app/data -e TWIKOO_PORT8100 -d imaegoo/twi…...

Vue.js 与 Flask/Django 后端配合:构建现代 Web 应用的最佳实践

Vue.js 与 Flask/Django 后端配合:构建现代 Web 应用的最佳实践 在现代 Web 开发中,前后端分离的架构已经成为主流。Vue.js 作为一个渐进式 JavaScript 框架,因其灵活性和易用性而广受欢迎。而 Flask 和 Django 则是 Python 生态中两个非常流…...

【笔记】自动驾驶预测与决策规划_Part3_路径与轨迹规划

文章目录 0. 前言1. 基于搜索的路径规划1.1 A* 算法1.2 Hybrid A* 算法 2. 基于采样的路径规划2.1 Frent Frame方法2.2 Cartesian →Frent 1D ( x , y ) (x, y) (x,y) —> ( s , l ) (s, l) (s,l)2.3 Cartesian →Frent 3D2.4 贝尔曼Bellman最优性原理2.5 高速轨迹采样——…...

Shiro-721—漏洞分析(CVE-2019-12422)

文章目录 Padding Oracle Attack 原理PKCS5填充怎么爆破攻击 漏洞原理源码分析漏洞复现 本文基于shiro550漏洞基础上分析,建议先看上期内容: https://blog.csdn.net/weixin_60521036/article/details/142373353 Padding Oracle Attack 原理 网上看了很多…...

【Python语言初识(一)】

一、python简史 1.1、python的历史 1989年圣诞节:Guido von Rossum开始写Python语言的编译器。1991年2月:第一个Python编译器(同时也是解释器)诞生,它是用C语言实现的(后面),可以调…...

Python 中的方法解析顺序(MRO)

在 Python 中,MRO(Method Resolution Order,方法解析顺序)是指类继承体系中,Python 如何确定在调用方法时的解析顺序。MRO 决定了在多继承环境下,Python 如何寻找方法或属性,即它会根据一定规则…...

MySQL表的内外连接

内连接 其实就是from 两个表 把笛卡尔积的表 再用where 进行条件筛选 ——之前我们写的多表查询就是内连接 基本格式: 外链接 没有向内连接那样真的把两个表连接形式一个表显示,而只是建立关系 外连接分为左链接和右链接 左链接 联合查询时候&#…...

系统架构设计师:软件架构的演化和维护

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师:软件架构的演化和维护前言软件架构演化的重要性面向对象的软件架构演…...

QT的dropEvent函数进入不了

在使用QT想实现拖拽功能的时候,发现了dropEvent没有调用运行,遂查找原因: 首先是网上都说要在dragEnterEvent里面使用event->accept(); 但我这边在出现问题之前就已经这样做了: void CanvasView::dragEnterEvent(QDragEnterEv…...

Spring Boot 入门

前言 Spring Boot 是一个开源的 Java 基础框架,用于创建独立、生产级的基于 Spring 的应用程序。它简化了基于 Spring 的应用开发,通过提供一系列的“起步依赖”来快速启动和运行 Spring 应用。本文将带你深入了解 Spring Boot 的核心概念、关键特性&am…...

LDD学习2--Scull(TODO)

《Linux Device Drivers》(LDD)书籍中的 scull(Simple Character Utility for Loading Localities)是一个用于演示 Linux 字符设备驱动程序编写的示例代码。它为理解 Linux 内核模块和字符设备驱动程序的编写提供了基础实践平台&a…...

【算法-堆排序】

堆排序是一种基于堆这种数据结构的比较排序算法,它是一种原地、不稳定的排序算法,时间复杂度为 O(n log n)。堆排序的基本思想是将数组构建成一个二叉堆,并通过反复调整堆顶和未排序部分之间的关系来实现排序。 堆的定义 堆是一种特殊的完全…...

音视频入门基础:AAC专题(4)——ADTS格式的AAC裸流实例分析

音视频入门基础:AAC专题系列文章: 音视频入门基础:AAC专题(1)——AAC官方文档下载 音视频入门基础:AAC专题(2)——使用FFmpeg命令生成AAC裸流文件 音视频入门基础:AAC…...

【第33章】Spring Cloud之SkyWalking服务链路追踪

文章目录 前言一、介绍1. 架构图2. SkyWalking APM 二、服务端和控制台1. 下载2. 解压3. 初始化数据库4. 增加驱动5. 修改后端配置6. 启动7. 访问控制台8. 数据库表 三、客户端1. 下载2. 设置java代理3. idea配置3.1 环境变量3.2 JVM参数3.3 启动日志 4. 启用网关插件 四、链路…...

如何选择OS--Linux不同Distribution的选用

写在前言: 刚写了Windows PC的不同editions的选用,趁热,把Linux不同的Distribution选用也介绍下,希望童鞋们可以了解-->理解-->深入了解-->深入理解--...以致于能掌握特定版本的Linux的使用甚者精通。……^.^…… so&a…...

cesium效果不酷炫怎么办--增加渲染器

DrawCommand 可以发挥 WebGL 全部潜力吗? 回答: Cesium 的 DrawCommand 是一个用于表示 WebGL 渲染管线中单个绘制调用的低级抽象。它封装了执行 WebGL 绘制所需的所有信息,包括着色器程序、顶点数组、渲染状态、统一变量(unifo…...

计算机网络:概述 --- 体系结构

目录 一. 体系结构总览 1.1 OSI七层协议体系结构 1.2 TCP/IP四层(或五层)模型结构 二. 数据传输过程 2.1 同网段传输 2.2 跨网段传输 三. 体系结构相关概念 3.1 实体 3.2 协议 3.3 服务 这里我们专门来讲一下计算机网络中的体系结构。其实我们之前…...

DEPLOT: One-shot visual language reasoning by plot-to-table translation论文阅读

文章链接:https://arxiv.org/abs/2308.01979http://arxiv.org/abs/2212.10505https://arxiv.org/abs/2308.01979 源码链接:https://github.com/cse-ai-lab/RealCQA 启发:two-stage方法可能是未来主要研究方向,能够增强模型可解释…...

从 HDFS 迁移到 MinIO 企业对象存储

云原生、面向 Kubernetes 、基于微服务的架构推动了对 MinIO 等网络存储的需求。在云原生环境中,对象存储的优势很多 - 它允许独立于存储硬件对计算硬件进行弹性扩展。它使应用程序无状态,因为状态是通过网络存储的,并且通过降低操作复杂性&a…...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层&#xf…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息&#xff0…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...