当前位置: 首页 > news >正文

回归预测 | Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量回归预测

回归预测 | Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量回归预测

目录

    • 回归预测 | Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量回归预测(完整源码和数据)优化的参量分别为:正则化系数C,rbf核函数的核系数S,多项式核函数的两个核系数poly1和poly2,以及核权重系数w。
2.运行环境为Matlab2021b;
3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价;
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式(资源出下载):Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量回归预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  参数设置
%% 获取最优正则化系数 C 和核函数参数 S 
Kernel_type1 = 'rbf'; %核函数类型1
Kernel_type2 = 'poly'; %核函数类型2%% 适应度函数
fobj=@(X)fobj(X,p_train,t_train,p_test,t_test,Kernel_type1,Kernel_type2);%% 优化算法参数设置
pop=10;
Max_iter=20;
ub=[20 10^(3) 10^(3) 10 1];  %优化的参量分别为:正则化系数C,rbf核函数的核系数S(接下)
lb=[1 10^(-3) 10^(-3) 1 0];  %多项式核函数的两个核系数poly1和poly2,以及核权重系数w
dim=5;
%%  优化算法

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量回归预测

回归预测 | Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量回归预测 目录 回归预测 | Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现SSA-HKELM麻雀算法优化混合核极限学习机多变量…...

VCNet论文阅读笔记

VCNet论文阅读笔记 0、基本信息 信息细节英文题目VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments翻译VCNet和功能目标正则化用于学习连续处理的因果效应单位芝加哥大学年份2021论文链接[2103.07861] VCNet和功能定向正…...

Python 装饰器使用详解

文章目录 0. 引言1. 什么是装饰器?2. 装饰器的基本语法3. 装饰器的工作原理4. 常见装饰器应用场景4.1. 日志记录4.2. 权限校验4.3. 缓存 5. 多重装饰器的执行顺序6. 装饰器的高级用法6.1. 带参数的装饰器6.2. 使用 functools.wraps6.3. 类装饰器 7. 图示说明7.1. 单…...

Vue使用qrcodejs2-fix生成网页二维码

安装qrcodejs2-fix npm install qrcodejs2-fix核心代码 在指定父view中生成一个二维码通过id找到父布局 //通过id找到父布局let codeView document.getElementById("qrcode")new QRCode(codeView, {text: "测试",width: 128,height: 128,colorDark: #00…...

兼容多个AI应用接口,支持用户自定义切换AI接口

项目背景 2023年ChatGPT横空出世,给IT行业造成了巨大的反响。我第一次发现这个ChatGPT有着如此神奇的功能(智能对话,知识问答,代码生成,逻辑推理等),我感到非常吃惊!经过一番学习和…...

[docker]入门

本文章主要讲述的是,docker基本实现原理,docker概念的解释,docker的使用场景以及docker打包与部署的应用。 文章中docker所运行的系统:CentOS Linux release 7.9.2009 (Core) 目录 docker是什么,什么时候需要去使用 …...

《让手机秒变超级电脑!ToDesk云电脑、易腾云、青椒云移动端评测》

前言 科技发展到如今2024年,可以说每一年都在发生翻天覆地的变化。而云上这个词时常都被大家提起,从个人设备连接到云端在如今在也不是梦了。而云电脑这个市场近年来迅速发展,无需购买和维护额外的硬件就可以体验到电脑端顶配的性能和体验&am…...

Nginx处理带有分号“;“的路径

一、背景 安全渗透测试发现springboot 未授权访问的actuator和Swagger-ui 信息泄露的漏洞,需要规避。解决方案中较简单的就是通过Nginx将相关的接口转发到403页面。 在配置的过程当中,遇到了带有…;的路径:http://{ip:port}/{path}/…;/actu…...

Spring Boot框架下的心理教育辅导系统开发

1绪 论 1.1研究背景 随着计算机和网络技术的不断发展,计算机网络已经逐渐深入人们的生活,网络已经能够覆盖我们生活的每一个角落,给用户的网上交流和学习提供了巨大的方便。 当今社会处在一个高速发展的信息时代,计算机网络的发展…...

PyTorch 图像分割模型教程

PyTorch 图像分割模型教程 在图像分割任务中,目标是将图像的每个像素归类为某一类,以分割出特定的物体。PyTorch 提供了非常灵活的工具,可以用于构建和训练图像分割模型。我们将使用 PyTorch 的经典网络架构,如 UNet 和 DeepLabV…...

物联网——USART协议

接口 串口通信 硬件电路 电平标准 串口参数、时序 USART USART主要框图 TXE: 判断发送寄存器是否为空 RXNE: 判断接收寄存器是否非空 RTS为输出信号,用于表示MCU串口是否准备好接收数据,若输出信号为低电平,则说明MCU串口可以接收数据&#…...

前端框架对比与选择:如何在现代Web开发中做出最佳决策

随着互联网技术的迅速发展,前端开发在现代Web应用开发中扮演了至关重要的角色。对于开发者来说,选择合适的前端框架不仅能够提高开发效率,还能确保项目的可维护性和可扩展性。目前市面上有多种主流的前端框架和库,每一种都有其独特…...

【浅水模型MATLAB】尝试复刻SCI论文中的溃坝流算例

【浅水模型MATLAB】尝试复刻SCI论文中的溃坝流算例 前言问题描述控制方程及数值方法浅水方程及其数值计算方法边界条件的实现 代码框架与关键代码模拟结果 更新于2024年9月17日 前言 这篇博客算是学习浅水方程,并利用MATLAB复刻Liang (2004)1中溃坝流算例的一个记录…...

探索云计算:IT行业的未来趋势

探索云计算:IT行业的未来趋势 在当今快速发展的科技世界,云计算已成为IT行业的核心趋势之一。无论是大企业还是初创公司,越来越多的组织正在转向云计算,以实现更高效的运营和更快的创新。在这篇博文中,我们将探讨云计算…...

[PICO VR眼镜]眼动追踪串流Unity开发与使用方法,眼动追踪打包报错问题解决(Eye Tracking/手势跟踪)

前言 最近在做一个工作需要用到PICO4 Enterprise VR头盔里的眼动追踪功能,但是遇到了如下问题: 在Unity里面没法串流调试眼动追踪功能,根本获取不到Device,只能将整个场景build成APK,安装到头盔里,才能在…...

一周热门|比GPT-4强100倍,OpenAI有望年底发布GPT-Next;1个GPU,1分钟,16K图像

大模型周报将从【企业动态】【技术前瞻】【政策法规】【专家观点】四部分,带你快速跟进大模型行业热门动态。 01 企业动态 Ilya 新公司 SSI 官宣融资 10 亿美元 据路透社报道,由 OpenAI 联合创始人、前首席科学家 Ilya Sutskever 在 2 个多月前共同创…...

软考流水线计算

某计算机系统输入/输出采用双缓冲工作方式,其工作过程如下图所示,假设磁盘块与缓冲区大小相同,每个盘块读入缓冲区的时间T为10μs,由缓冲区送至用户区的时间M为6μs,系统对每个磁盘块数据的处理时间C为2μs。若用户需要…...

1份可以派上用场丢失数据恢复的应用程序列表

无论如何,丢失您的宝贵数据是可怕的。您的 Android 或 iOS 设备可能由于事故、硬件损坏、存储卡问题等而丢失了数据。这就是为什么我们编制了一份可以派上用场以恢复丢失数据的应用程序列表。 如果您四处走动,您大多会随身携带手机或其他移动设备。这些…...

MySQL Workbench 超详细安装教程(一步一图解,保姆级安装)

前言: MySQL Workbench 是一款强大的数据库设计和管理工具,它提供了图形化界面,使得数据库的设计、管理、查询等操作变得更加直观和便捷。本文将详细介绍如何在 Windows 系统上安装 MySQL Workbench。相信读者看这篇文章前一定安装了MySQL数…...

深度学习常见面试题及答案(16~20)

算法学习、4对1辅导、论文辅导或核心期刊以及其他学习资源可以通过公众号滴滴我 文章目录 16. 简述深度学习中的批量归一化(Batch Normalization)的目的和工作原理。一、批量归一化的目的1. 加速训练收敛:2. 提高模型泛化能力:3. …...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

AI,如何重构理解、匹配与决策?

AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...