《使用 LangChain 进行大模型应用开发》学习笔记(四)
前言
本文是 Harrison Chase (LangChain 创建者)和吴恩达(Andrew Ng)的视频课程《LangChain for LLM Application Development》(使用 LangChain 进行大模型应用开发)的学习笔记。由于原课程为全英文视频课程,国内访问较慢,同时我整理和替换了部分内容以便于国内学习。阅读本文可快速学习课程内容。
课程介绍
本课程介绍了强大且易于扩展的 LangChain 框架,LangChain 框架是一款用于开发大语言模型(LLM)应用的开源框架,其使用提示词、记忆、链、代理等简化了大语言模型应用的开发工作。由于 LangChain 仍处于快速发展期,部分 API 还不稳定,课程中的部分代码已过时,我使用了目前最新的 v0.2 版本进行讲解,所有代码均可在 v0.2 版本下执行。另外,课程使用的 OpenAI 在国内难以访问,我替换为国内的 Kimi 大模型及开源自建的 Ollama,对于学习没有影响。
参考这篇文章来获取 Kimi 的 API 令牌。
参考这篇文章来用 Ollama 部署自己的大模型。
课程分为五个部分:
- 第一部分
- 第二部分
- 第三部分
- 第四部分
- 第五部分

课程链接
第四部分
评估
构建问答应用
当构建一个复杂的 LLM 应用时,比较重要但又困难的是如何去评价应用的效果。又或者,当我们切换不同的 LLM 模型时,如何去评价模型的优劣。再者,当我们使用不同的向量数据库或参数时,对结果是变好了还是变坏了。接下来,我们将介绍如何来评估 LLM 应用的结果是否正确。
首先,我们创建一条之前使用的问答链。
from langchain.chains import RetrievalQA
from langchain_ollama import ChatOllama
from langchain_community.document_loaders import CSVLoader
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.vectorstores import DocArrayInMemorySearch
from langchain.indexes import VectorstoreIndexCreator
from langchain.evaluation.qa import QAGenerateChain# Ollama 服务地址
base_url = 'http://localhost:11434'
# 模型名称
llm_model = 'qwen2'
# 测试文件
file_path = 'product.csv'
# 创建模型
llm = ChatOllama(base_url=base_url, model=llm_model)
# 载入测试数据
loader = CSVLoader(file_path=file_path)
data = loader.load()
# 创建嵌入
embeddings = OllamaEmbeddings(base_url=base_url, model=llm_model)
# 创建向量索引
index = VectorstoreIndexCreator(vectorstore_cls=DocArrayInMemorySearch,embedding=embeddings
).from_loaders([loader])
# 创建问答链
qa = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=index.vectorstore.as_retriever(),verbose=True,chain_type_kwargs={"document_separator": "<<<<>>>>>"}
)
添加测试数据
我们可以添加一些测试数据,从 product.csv 中选取几条数据,例如第 11 和 12 条是下面这样:
11,高清投影仪,"高亮度,高对比度,支持高清视频播放,适合家庭影院和商务演示。"
12,智能手环,"监测心率、计步、睡眠,智能提醒,是健康生活的好伴侣。"
由于数据由 LLM 自动生成,数据可能都不相同。
我们设置问题并提供答案。这是一个字典 list,每个字典包含 query 和 answer。
examples = [{"query": "高清投影仪支持高清视频播放吗?","answer": "是"},{"query": "哪一款产品能监测心率?","answer": "智能手环"}
]
我们这里创建了两条测试数据,但还不够,手动创建比较费时间,有没有更自动的方式呢?我们可以让大语言模型自己来生成。在 LangChain 中我们可以使用 QAGenerateChain 来让 LLM 自动对每条数据生成测试问题和答案。
# 创建测试集生成链
example_gen_chain = QAGenerateChain.from_llm(llm)
# 生成并解析结果(由于需要调用 LLM,我们这里只取前 5 条)
new_examples = example_gen_chain.apply_and_parse([{"doc": t} for t in data[:5]]
)
print(new_examples[0])
我们查看第一条生成的测试数据,大概像这个样子。我们可以检查每一条生成的测试数据,看是否正确、合适。
{'qa_pairs': {'query': 'What features does the high-definition smart television have?', 'answer': 'The high-definition smart television has a 4K ultra-high definition resolution, an integrated intelligent system, and supports voice control. It provides a rich entertainment experience.'}}
另外,我们可以打开调试模式,看看它是如何运作的。
import langchain
langchain.debug = True
将上述代码放到前面,然后重新运行代码。下面的输出比较长,查看前面主要的部分,我们可以看到 QAGenerateChain 链对每一条数据启动了子链,并生成了提示词,要求 LLM 作为老师,根据下面的数据生成提问和答案。最后按特定的格式输出,然后 LangChain 就可以解析到字典中。
[chain/start] [chain:QAGenerateChain] Entering Chain run with input:
[inputs]
[llm/start] [chain:QAGenerateChain > llm:ChatOllama] Entering LLM run with input:
{"prompts": ["Human: You are a teacher coming up with questions to ask on a quiz. \nGiven the following document, please generate a question and answer based on that document.\n\nExample Format:\n<Begin Document>\n...\n<End Document>\nQUESTION: question here\nANSWER: answer here\n\nThese questions should be detailed and be based explicitly on information in the document. Begin!\n\n<Begin Document>\npage_content='no: 1\nname: 高清智能电视\ndescription: 这款高清智能电视拥有4K超高清分辨率,内置智能系统,支持语音控制,提供丰富的娱乐体验。' metadata={'source': 'product.csv', 'row': 0}\n<End Document>"]
}
[llm/start] [chain:QAGenerateChain > llm:ChatOllama] Entering LLM run with input:
{"prompts": ["Human: You are a teacher coming up with questions to ask on a quiz. \nGiven the following document, please generate a question and answer based on that document.\n\nExample Format:\n<Begin Document>\n...\n<End Document>\nQUESTION: question here\nANSWER: answer here\n\nThese questions should be detailed and be based explicitly on information in the document. Begin!\n\n<Begin Document>\npage_content='no: 2\nname: 多功能料理机\ndescription: 集搅拌、打蛋、榨汁等多种功能于一身,操作简便,是厨房里的得力助手。' metadata={'source': 'product.csv', 'row': 1}\n<End Document>"]
}
[llm/start] [chain:QAGenerateChain > llm:ChatOllama] Entering LLM run with input:
{"prompts": ["Human: You are a teacher coming up with questions to ask on a quiz. \nGiven the following document, please generate a question and answer based on that document.\n\nExample Format:\n<Begin Document>\n...\n<End Document>\nQUESTION: question here\nANSWER: answer here\n\nThese questions should be detailed and be based explicitly on information in the document. Begin!\n\n<Begin Document>\npage_content='no: 3\nname: 无线蓝牙耳机\ndescription: 轻巧舒适,音质清晰,支持长时间续航,适合运动和日常使用。' metadata={'source': 'product.csv', 'row': 2}\n<End Document>"]
}
[llm/start] [chain:QAGenerateChain > llm:ChatOllama] Entering LLM run with input:
{"prompts": ["Human: You are a teacher coming up with questions to ask on a quiz. \nGiven the following document, please generate a question and answer based on that document.\n\nExample Format:\n<Begin Document>\n...\n<End Document>\nQUESTION: question here\nANSWER: answer here\n\nThese questions should be detailed and be based explicitly on information in the document. Begin!\n\n<Begin Document>\npage_content='no: 4\nname: 智能扫地机器人\ndescription: 自动规划清扫路线,智能避障,解放双手,保持家中清洁。' metadata={'source': 'product.csv', 'row': 3}\n<End Document>"]
}
[llm/start] [chain:QAGenerateChain > llm:ChatOllama] Entering LLM run with input:
{"prompts": ["Human: You are a teacher coming up with questions to ask on a quiz. \nGiven the following document, please generate a question and answer based on that document.\n\nExample Format:\n<Begin Document>\n...\n<End Document>\nQUESTION: question here\nANSWER: answer here\n\nThese questions should be detailed and be based explicitly on information in the document. Begin!\n\n<Begin Document>\npage_content='no: 5\nname: 便携式榨汁机\ndescription: 小巧便携,操作简便,快速榨汁,适合健康生活需求。' metadata={'source': 'product.csv', 'row': 4}\n<End Document>"]
}
[llm/end] [chain:QAGenerateChain > llm:ChatOllama] [75.50s] Exiting LLM run with output:
{"generations": [[{"text": "QUESTION: What features does the high-definition smart television have?\nANSWER: The high-definition smart television has a 4K ultra-high definition resolution, an integrated intelligent system, and supports voice control. It provides a rich entertainment experience.","generation_info": {"model": "qwen2","created_at": "2024-09-12T02:27:28.132404919Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 15075322258,"load_duration": 4068642657,"prompt_eval_count": 146,"prompt_eval_duration": 3419985000,"eval_count": 48,"eval_duration": 7545190000},"type": "ChatGeneration","message": {"lc": 1,"type": "constructor","id": ["langchain","schema","messages","AIMessage"],"kwargs": {"content": "QUESTION: What features does the high-definition smart television have?\nANSWER: The high-definition smart television has a 4K ultra-high definition resolution, an integrated intelligent system, and supports voice control. It provides a rich entertainment experience.","response_metadata": {"model": "qwen2","created_at": "2024-09-12T02:27:28.132404919Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 15075322258,"load_duration": 4068642657,"prompt_eval_count": 146,"prompt_eval_duration": 3419985000,"eval_count": 48,"eval_duration": 7545190000},"type": "ai","id": "run-e2282df6-a2bb-4b75-bd94-c6ee8338b339-0","usage_metadata": {"input_tokens": 146,"output_tokens": 48,"total_tokens": 194},"tool_calls": [],"invalid_tool_calls": []}}}]],"llm_output": null,"run": null
}
[llm/end] [chain:QAGenerateChain > llm:ChatOllama] [75.51s] Exiting LLM run with output:
{"generations": [[{"text": "QUESTION: What is the multifunctional kitchen appliance mentioned in the document capable of doing?\nANSWER: The multifunctional kitchen appliance, known as '多功能料理机', can perform various tasks such as blending, whisking eggs, and juicing. It's designed for ease of operation and serves as a helpful tool in the kitchen.","generation_info": {"model": "qwen2","created_at": "2024-09-12T02:27:40.655928024Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 12512086251,"load_duration": 62599702,"prompt_eval_count": 145,"prompt_eval_duration": 1594234000,"eval_count": 69,"eval_duration": 10853358000},"type": "ChatGeneration","message": {"lc": 1,"type": "constructor","id": ["langchain","schema","messages","AIMessage"],"kwargs": {"content": "QUESTION: What is the multifunctional kitchen appliance mentioned in the document capable of doing?\nANSWER: The multifunctional kitchen appliance, known as '多功能料理机', can perform various tasks such as blending, whisking eggs, and juicing. It's designed for ease of operation and serves as a helpful tool in the kitchen.","response_metadata": {"model": "qwen2","created_at": "2024-09-12T02:27:40.655928024Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 12512086251,"load_duration": 62599702,"prompt_eval_count": 145,"prompt_eval_duration": 1594234000,"eval_count": 69,"eval_duration": 10853358000},"type": "ai","id": "run-db59bd5a-e8c5-4ce4-be93-477b1f7beeeb-0","usage_metadata": {"input_tokens": 145,"output_tokens": 69,"total_tokens": 214},"tool_calls": [],"invalid_tool_calls": []}}}]],"llm_output": null,"run": null
}
[llm/end] [chain:QAGenerateChain > llm:ChatOllama] [75.51s] Exiting LLM run with output:
{"generations": [[{"text": "QUESTION: What are the features of the product with the name \"无线蓝牙耳机\" (Wireless Bluetooth Earphones)?\n\nANSWER: The product named \"无线蓝牙耳机\" offers several features including:\n1. **Lightweight and Comfortable**: The earphones are designed to be lightweight, ensuring comfort during use.\n2. **Crystal Clear Sound Quality**: It provides clear sound quality for an enjoyable listening experience.\n3. **Long Battery Life**: The headphones support a long duration of battery usage, making them suitable for both sports activities and everyday use.\n4. **Versatile Use**: They can be used while exercising or in daily routines without any issues due to their versatile design and functionality.\n\nThese features highlight the product's suitability for users who value convenience, comfort, and audio quality in their listening devices.","generation_info": {"model": "qwen2","created_at": "2024-09-12T02:28:06.427487738Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 25761127075,"load_duration": 63109381,"prompt_eval_count": 139,"prompt_eval_duration": 1397453000,"eval_count": 162,"eval_duration": 24259968000},"type": "ChatGeneration","message": {"lc": 1,"type": "constructor","id": ["langchain","schema","messages","AIMessage"],"kwargs": {"content": "QUESTION: What are the features of the product with the name \"无线蓝牙耳机\" (Wireless Bluetooth Earphones)?\n\nANSWER: The product named \"无线蓝牙耳机\" offers several features including:\n1. **Lightweight and Comfortable**: The earphones are designed to be lightweight, ensuring comfort during use.\n2. **Crystal Clear Sound Quality**: It provides clear sound quality for an enjoyable listening experience.\n3. **Long Battery Life**: The headphones support a long duration of battery usage, making them suitable for both sports activities and everyday use.\n4. **Versatile Use**: They can be used while exercising or in daily routines without any issues due to their versatile design and functionality.\n\nThese features highlight the product's suitability for users who value convenience, comfort, and audio quality in their listening devices.","response_metadata": {"model": "qwen2","created_at": "2024-09-12T02:28:06.427487738Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 25761127075,"load_duration": 63109381,"prompt_eval_count": 139,"prompt_eval_duration": 1397453000,"eval_count": 162,"eval_duration": 24259968000},"type": "ai","id": "run-3dc06185-da4e-4b56-b615-dcf831157fb2-0","usage_metadata": {"input_tokens": 139,"output_tokens": 162,"total_tokens": 301},"tool_calls": [],"invalid_tool_calls": []}}}]],"llm_output": null,"run": null
}
[llm/end] [chain:QAGenerateChain > llm:ChatOllama] [75.51s] Exiting LLM run with output:
{"generations": [[{"text": "QUESTION: What is the product being described and what are its main features?\n\nANSWER: The product being described is a \"智能扫地机器人\" (intelligent floor sweeping robot). Its main features include automatic planning of cleaning routes, intelligent obstacle avoidance, freeing up hands, and maintaining home cleanliness.","generation_info": {"model": "qwen2","created_at": "2024-09-12T02:28:17.028896159Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 10589442660,"load_duration": 26054599,"prompt_eval_count": 139,"prompt_eval_duration": 1401741000,"eval_count": 61,"eval_duration": 9159878000},"type": "ChatGeneration","message": {"lc": 1,"type": "constructor","id": ["langchain","schema","messages","AIMessage"],"kwargs": {"content": "QUESTION: What is the product being described and what are its main features?\n\nANSWER: The product being described is a \"智能扫地机器人\" (intelligent floor sweeping robot). Its main features include automatic planning of cleaning routes, intelligent obstacle avoidance, freeing up hands, and maintaining home cleanliness.","response_metadata": {"model": "qwen2","created_at": "2024-09-12T02:28:17.028896159Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 10589442660,"load_duration": 26054599,"prompt_eval_count": 139,"prompt_eval_duration": 1401741000,"eval_count": 61,"eval_duration": 9159878000},"type": "ai","id": "run-a489b5fe-7798-41f0-8380-e9bde0e8a889-0","usage_metadata": {"input_tokens": 139,"output_tokens": 61,"total_tokens": 200},"tool_calls": [],"invalid_tool_calls": []}}}]],"llm_output": null,"run": null
}
[llm/end] [chain:QAGenerateChain > llm:ChatOllama] [75.51s] Exiting LLM run with output:
{"generations": [[{"text": "QUESTION: What is the product described in this document?\nANSWER: The product described in this document is a portable juicer named \"便携式榨汁机\" (portable juice extractor). It's characterized as compact, easy to operate, and capable of quickly extracting juice, making it suitable for needs related to health living.","generation_info": {"model": "qwen2","created_at": "2024-09-12T02:28:28.529352164Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 11484086566,"load_duration": 62195060,"prompt_eval_count": 140,"prompt_eval_duration": 1362653000,"eval_count": 68,"eval_duration": 10018610000},"type": "ChatGeneration","message": {"lc": 1,"type": "constructor","id": ["langchain","schema","messages","AIMessage"],"kwargs": {"content": "QUESTION: What is the product described in this document?\nANSWER: The product described in this document is a portable juicer named \"便携式榨汁机\" (portable juice extractor). It's characterized as compact, easy to operate, and capable of quickly extracting juice, making it suitable for needs related to health living.","response_metadata": {"model": "qwen2","created_at": "2024-09-12T02:28:28.529352164Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 11484086566,"load_duration": 62195060,"prompt_eval_count": 140,"prompt_eval_duration": 1362653000,"eval_count": 68,"eval_duration": 10018610000},"type": "ai","id": "run-5709894f-ab18-4a1e-9e7b-0b8acd1eeb6a-0","usage_metadata": {"input_tokens": 140,"output_tokens": 68,"total_tokens": 208},"tool_calls": [],"invalid_tool_calls": []}}}]],"llm_output": null,"run": null
}
[chain/end] [chain:QAGenerateChain] [75.51s] Exiting Chain run with output:
{"outputs": [{"qa_pairs": {"query": "What features does the high-definition smart television have?","answer": "The high-definition smart television has a 4K ultra-high definition resolution, an integrated intelligent system, and supports voice control. It provides a rich entertainment experience."}},{"qa_pairs": {"query": "What is the multifunctional kitchen appliance mentioned in the document capable of doing?","answer": "The multifunctional kitchen appliance, known as '多功能料理机', can perform various tasks such as blending, whisking eggs, and juicing. It's designed for ease of operation and serves as a helpful tool in the kitchen."}},{"qa_pairs": {"query": "What are the features of the product with the name \"无线蓝牙耳机\" (Wireless Bluetooth Earphones)?","answer": "The product named \"无线蓝牙耳机\" offers several features including:"}},{"qa_pairs": {"query": "What is the product being described and what are its main features?","answer": "The product being described is a \"智能扫地机器人\" (intelligent floor sweeping robot). Its main features include automatic planning of cleaning routes, intelligent obstacle avoidance, freeing up hands, and maintaining home cleanliness."}},{"qa_pairs": {"query": "What is the product described in this document?","answer": "The product described in this document is a portable juicer named \"便携式榨汁机\" (portable juice extractor). It's characterized as compact, easy to operate, and capable of quickly extracting juice, making it suitable for needs related to health living."}}]
}
接着,我们将手动创建的测试数据和自动创建的合并。
all_examples = examples + [ex['qa_pairs'] for ex in new_examples]
手动评估
我们让 LLM 来回答我们测试数据集中的问题,首先测试第一条手动添加的问题。
response = qa.run(examples[0]["query"])
print(response)
调试模式下的输出类似下面这样。
[chain/start] [chain:RetrievalQA] Entering Chain run with input:
{"query": "高清投影仪支持高清视频播放吗?"
}
[chain/start] [chain:RetrievalQA > chain:StuffDocumentsChain] Entering Chain run with input:
[inputs]
[chain/start] [chain:RetrievalQA > chain:StuffDocumentsChain > chain:LLMChain] Entering Chain run with input:
{"question": "高清投影仪支持高清视频播放吗?","context": "no: 11\nname: 高清投影仪\ndescription: 高亮度,高对比度,支持高清视频播放,适合家庭影院和商务演示。<<<<>>>>>no: 22\nname: 智能跑步机\ndescription: 多种运动模式,智能记录运动数据,适合家庭健身。<<<<>>>>>no: 12\nname: 智能手环\ndescription: 监测心率、计步、睡眠,智能提醒,是健康生活的好伴侣。<<<<>>>>>no: 4\nname: 智能扫地机器人\ndescription: 自动规划清扫路线,智能避障,解放双手,保持家中清洁。"
}
[llm/start] [chain:RetrievalQA > chain:StuffDocumentsChain > chain:LLMChain > llm:ChatOllama] Entering LLM run with input:
{"prompts": ["System: Use the following pieces of context to answer the user's question. \nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n----------------\nno: 11\nname: 高清投影仪\ndescription: 高亮度,高对比度,支持高清视频播放,适合家庭影院和商务演示。<<<<>>>>>no: 22\nname: 智能跑步机\ndescription: 多种运动模式,智能记录运动数据,适合家庭健身。<<<<>>>>>no: 12\nname: 智能手环\ndescription: 监测心率、计步、睡眠,智能提醒,是健康生活的好伴侣。<<<<>>>>>no: 4\nname: 智能扫地机器人\ndescription: 自动规划清扫路线,智能避障,解放双手,保持家中清洁。\nHuman: 高清投影仪支持高清视频播放吗?"]
}
[llm/end] [chain:RetrievalQA > chain:StuffDocumentsChain > chain:LLMChain > llm:ChatOllama] [6.70s] Exiting LLM run with output:
{"generations": [[{"text": "是的,高清投影仪支持高清视频播放。","generation_info": {"model": "qwen2","created_at": "2024-09-12T02:45:31.841247748Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 6682410396,"load_duration": 25734266,"prompt_eval_count": 211,"prompt_eval_duration": 5067573000,"eval_count": 12,"eval_duration": 1532113000},"type": "ChatGeneration","message": {"lc": 1,"type": "constructor","id": ["langchain","schema","messages","AIMessage"],"kwargs": {"content": "是的,高清投影仪支持高清视频播放。","response_metadata": {"model": "qwen2","created_at": "2024-09-12T02:45:31.841247748Z","message": {"role": "assistant","content": ""},"done_reason": "stop","done": true,"total_duration": 6682410396,"load_duration": 25734266,"prompt_eval_count": 211,"prompt_eval_duration": 5067573000,"eval_count": 12,"eval_duration": 1532113000},"type": "ai","id": "run-6ef3e8d8-425e-4f61-9c1d-9925a2277e8f-0","usage_metadata": {"input_tokens": 211,"output_tokens": 12,"total_tokens": 223},"tool_calls": [],"invalid_tool_calls": []}}}]],"llm_output": null,"run": null
}
[chain/end] [chain:RetrievalQA > chain:StuffDocumentsChain > chain:LLMChain] [6.70s] Exiting Chain run with output:
{"text": "是的,高清投影仪支持高清视频播放。"
}
[chain/end] [chain:RetrievalQA > chain:StuffDocumentsChain] [6.71s] Exiting Chain run with output:
{"output_text": "是的,高清投影仪支持高清视频播放。"
}
[chain/end] [chain:RetrievalQA] [7.29s] Exiting Chain run with output:
{"result": "是的,高清投影仪支持高清视频播放。"
}
是的,高清投影仪支持高清视频播放。
可以看到,这里使用 stuff 链并生成了提示词,将我们的数据也一并提交给了 LLM,LLM 给出的答案是:是的,高清投影仪支持高清视频播放。答案并不一模一样,但意思是一样的。
让 LLM 自我评估
那如果我们要对所有数据进行测试呢?也需要一条条比对吗?我们也可以让 LLM 来帮助我们做这些。LangChain 提供了 QAEvalChain 链来自动评估结果。
我们可以先关闭调试模式 langchain.debug = False,避免过多的内容输出。
from langchain.evaluation.qa import QAEvalChain# 获得所有测试数据的预测结果
predictions = qa.apply(all_examples)
# 可以使用之前的 LLM 模型,也可以使用一个新的模型
llm = ChatOllama(base_url=base_url, model=llm_model)
# 创建评估链
eval_chain = QAEvalChain.from_llm(llm)
# 获得评估结果
graded_outputs = eval_chain.evaluate(all_examples, predictions)
# 遍历输出结果
for i, eg in enumerate(all_examples):print(f"Example {i}:")print("Question: " + predictions[i]['query'])print("Real Answer: " + predictions[i]['answer'])print("Predicted Answer: " + predictions[i]['result'])print("Predicted Grade: " + graded_outputs[i]['results'])print()
输出类似如下所示。
Example 0:
Question: 高清投影仪支持高清视频播放吗?
Real Answer: 是
Predicted Answer: 是的,高清投影仪支持高清视频播放。
Predicted Grade: CORRECTExample 1:
Question: 哪一款产品能监测心率?
Real Answer: 智能手环
Predicted Answer: 智能手环能监测心率。
Predicted Grade: CORRECTExample 2:
Question: What features does the high-definition smart TV have according to the document?
Real Answer: The high-definition smart TV mentioned in the document has several notable features. It boasts a 4K ultra-high definition resolution, indicating an exceptionally clear picture quality. Additionally, it is equipped with an internal smart system which allows for various interactive functionalities. One of these capabilities includes voice control, suggesting users can operate or navigate through its features using their voice commands. Lastly, the TV offers a rich entertainment experience, implying that it may include access to streaming services, internet connectivity, and other multimedia content options to ensure users enjoy a varied range of programming.
Predicted Answer: I'm sorry, but I don't know the answer because the provided context doesn't mention a "high-definition smart TV". The context includes information about a high-definition projector, an automatic coffee machine, and an intelligent treadmill.
Predicted Grade: INCORRECTExample 3:
Question: What is the product described in this document?
Real Answer: The product described in this document is a "multifunctional kitchen appliance" which combines various functions such as mixing, beating eggs and juicing. It's noted for its ease of use, making it a helpful tool in the kitchen.
Predicted Answer: The document describes several different products:1. 高清投影仪 - A high-definition projector with high brightness and contrast, suitable for home cinema and business presentations.
2. 无线蓝牙耳机 - Wireless Bluetooth headphones that are lightweight, comfortable to wear, have clear sound quality, and offer long battery life, suitable for sports and daily use.
3. 全自动咖啡机 - An automated coffee machine that allows one-button operation and offers multiple coffee flavor choices, providing a professional coffee experience.
4. 智能跑步机 - A smart treadmill with various exercise modes and the ability to record workout data automatically, suitable for home fitness routines.Each product has been characterized by its unique features and application scenarios as detailed in their descriptions.
Predicted Grade: INCORRECTExample 4:
Question: What are the features of the product described in the document?
Real Answer: The product, named "wireless bluetooth headphones," is characterized by being lightweight and comfortable to wear. It offers clear sound quality and supports long-lasting battery life, making it suitable for both sports activities and everyday use.
Predicted Answer: The product described is an "高清投影仪" (High Definition Projector), which features high brightness, high contrast ratio, and support for high-definition video playback. It's suitable for both家庭影院 (home cinema) and 商务演示 (business presentations).Another product mentioned is an "全自动咖啡机" (Fully Automatic Coffee Machine). This machine allows for one-touch operation with a variety of coffee taste choices, providing a professional coffee experience.A third item highlighted is the "智能跑步机" (Smart Treadmill), which offers various exercise modes and can intelligently record workout data. It's ideal for家庭健身 (home fitness).Lastly, there's an "智能扫地机器人" (Smart Vacuum Cleaning Robot) that autonomously plans its cleaning routes, has intelligent obstacle avoidance, frees up hands, and helps keep the home clean.
Predicted Grade: INCORRECTExample 5:
Question: What is the description of the product "智能扫地机器人"?
Real Answer: The description of the product "智能扫地机器人" is that it automatically plans cleaning routes, has intelligent obstacle avoidance, frees up your hands, and keeps the house clean.
Predicted Answer: The description of the product "智能扫地机器人" is: 自动规划清扫路线,智能避障,解放双手,保持家中清洁。
Predicted Grade: CORRECTExample 6:
Question: What is the description of the product '便携式榨汁机'?
Real Answer: The '便携式榨汁机' is described as being small, portable, easy to operate, fast at juicing and suitable for health living needs.
Predicted Answer: I don't know the answer to that question because there is no specific context provided for a '便携式榨汁机' (portable juicer).
Predicted Grade: CORRECT
从上面的输出我们看到,我们这里应该有 7 条测试数据,而每一条数据都输出了 Question(问题),Real Answer(真实回答),Predicted Answer(预测回答) 和 Predicted Grade(预测结果)四行。其中 Real Answer 是先前的 QAGenerateChain 创建的测试集中的答案,而 Predicted Answer 则是由 QAEvalChain 回答的答案,最后的 Predicted Grade 则是两者的匹配结果。上面生成的测试中,部分通过了测试,但是并没有全部通过。
由于两次回答是两条独立的链调用的,因此是互相没有影响的。而我们的问题往往是开放的,没有固定的答案,因此也需要 LLM 来帮助我们判断两次的答案是否是一致的。
这里我们学习了如何使用 LLM 来建立自动的测试链,自动生成测试数据,并自动评估答案。这样就可以方便地生成大批量的测试数据,并快速评估结果。
(未完待续)
下一篇:第五部分
相关文章:
《使用 LangChain 进行大模型应用开发》学习笔记(四)
前言 本文是 Harrison Chase (LangChain 创建者)和吴恩达(Andrew Ng)的视频课程《LangChain for LLM Application Development》(使用 LangChain 进行大模型应用开发)的学习笔记。由于原课程为全英文视频课…...
gbase8s数据库常见的索引扫描方式
1 顺序扫描(Sequential scan):数据库服务器按照物理顺序读取表中的所有记录。 常发生在表上无索引或者数据量很少或者一些无法使用索引的sql语句中 2 索引扫描(Index scan):数据库服务器读取索引页&#…...
边缘智能-大模型架构初探
R2Cloud接口 机器人注册 请求和应答 注册是一个简单的 HTTP 接口,根据机器人/用户信息注册,创建一个新机器人。 请求 URL URLhttp://ip/robot/regTypePOSTHTTP Version1.1Content-Typeapplication/json 请求参数 Param含义Rule是否必须缺省roboti…...
《python语言程序设计》2018版第8章18题几何circle2D类(上部)
一、利用第7章的内容来做前5个点 第一章之1--从各种角度来测量第一章之2--各种结果第二章之1--建立了针对比对点在圆内的几段第二章之2--利用建立的对比代码,得出的第2点位置 第一章之1–从各种角度来测量 class Circle2D:def __init__(self, x, y, radius):self._…...
nginx upstream转发连接错误情况研究
本次测试用到3台服务器: 192.168.10.115:转发服务器A 192.168.10.209:upstream下服务器1 192.168.10.210:upstream下服务器2 1台客户端:192.168.10.112 服务器A中nginx主要配置如下: log_format main…...
alias 后门从入门到应急响应
目录 1. alias 后门介绍 2. alias 后门注入方式 2.1 方式一(以函数的方式执行) 2.2 方式二(执行python脚本) 3.应急响应 3.1 查看所有连接 3.2 通过PID查看异常连接的进程,以及该进程正在执行的命令行命令 3.3 查看别名 3.4 其他情况 3.5 那么检查这些…...
【远程调用PythonAPI-flask】
文章目录 前言一、Pycharm创建flask项目1.创建虚拟环境2.创建flask项目 二、远程调用PythonAPI——SpringBoot项目集成1.修改PyCharm的host配置2.防火墙设置3.SpringBoot远程调用PythonAPI 前言 解决Pycharm运行Flask指定ip、端口更改无效的问题 首先先创建一个新的flask项目&…...
[今日Arxiv] 思维迭代:利用内心对话进行自主大型语言模型推理
思维迭代:利用内心对话进行自主大型语言模型推理 Iteration of Thought: Leveraging Inner Dialogue for Autonomous Large Language Model Reasoning URL:https://arxiv.org/abs/2409.12618 注:翻译可能存在误差,详细内容建议…...
glTF格式:WebGL应用的3D资产优化解决方案
摘要 glTF作为一种高效的3D资产格式,为WebGL、OpenGL ES和OpenGL运行时的应用提供了强有力的支持。它不仅简化了3D模型的传输与加载流程,还通过优化资产大小,使得打包、解包更加便捷。本文将深入探讨glTF格式的优势,并提供实用的代…...
Unity3D入门(一) : 第一个Unity3D项目,实现矩形自动旋转,并导出到Android运行
1. Unity3D介绍 Unity3D是虚拟现实行业中,使用率较高的一款软件。 它有着强大的功能,是让玩家轻松创建三维视频游戏、建筑可视化、实时三维动画等互动内容的多平台、综合型 虚拟现实开发工具。是一个全面整合的专业引擎。 2. Unity安装 官网 : Unity…...
数据结构与算法——Java实现 8.习题——移除链表元素(值)
祝福你有前路坦途的好运,更祝愿你能保持内心光亮 纵有风雨,依然选择勇敢前行 —— 24.9.22 203. 移除链表元素 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示…...
如何理解MVCC
MVCC是什么? MVCC,是MultiVersion Concurrency Control的缩写,翻译成中文就是多版本并发控制,多个事务同时访问同一数据时,调控每一个事务获取到数据的具体版本。和数据库锁一样,它也是一种并发控制的解决…...
在 Qt 中使用 QLabel 设置 GIF 动态背景
文章目录 在 Qt 中使用 QLabel 设置 GIF 动态背景本文食用注意目标实现步骤1. 准备工作2. 修改头文件 widget.h3. 实现构造函数和析构函数4. 调整背景大小5. 完整代码分析6. 运行程序 总结 在 Qt 中使用 QLabel 设置 GIF 动态背景 在 Qt 中,如果希望在窗口中设置一…...
Flyway 数据库差异处理
Flyway 数据库差异处理详解 在软件开发过程中,数据库 schema 的变更是不可避免的,尤其是在多人协作、多环境部署时,不同环境中的数据库结构可能出现差异。Flyway 作为一个数据库迁移工具,通过版本控制和自动化迁移,确…...
CSS 选择器的分类与使用要点一
目录 非 VIP 用户可前往公众号进行免费阅读 标签选择器 id 选择器 类选择器 介绍 公共类 CSS 中优先用 class 选择器,慎用 id 选择器 后代选择器 交集选择器 以标签名作为开头 以类名作为开头 连续交集 并集选择器(分组选择器) 通配符* 儿子选择器 >(IE7…...
无人机集群路径规划:麻雀搜索算法(Sparrow Search Algorithm, SSA)求解无人机集群路径规划,提供MATLAB代码
一、单个无人机路径规划模型介绍 无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化…...
harbor集成trivy镜像扫描工具
harbor项目地址:GitHub - goharbor/harbor: An open source trusted cloud native registry project that stores, signs, and scans content. 前置条件:安装好docker和docker-compose 一、安装harbor 1、下载harbor安装包并解压 wget https://github.com/goharbor/harbo…...
DMA学习
一、DMA简介 DMA是一种无需CPU的参与就可以让外设与系统内存之间进行双向数据传输的硬件机制。使用DMA可以使系统CPU从实际的I/O数据传输过程中摆脱出来,从而大大提高系统的吞吐率。 DMA方式的数据传输由DMA控制器(DMAC)控制,在传…...
C语言18--头文件
头文件的作用 通常,一个常规的C语言程序会包含多个源码文件(.c),当某些公共资源需要在各个源码文件中使用时,为了避免多次编写相同的代码,一般的做法是将这些大家都需要用到的公共资源放入头文件ÿ…...
vscode软件在 C发中常用插件
一. 简介 本文简单介绍一下,当做 C开发时 vscode软件常用的插件。 vscode软件是 微软公司目前提供的一款免费的开发软件,可以通过 vscode官网下载 vscode。 二. vscode软件在 C开发中常用插件 注意:vscode软件安装后,可以直接…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
从实验室到产业:IndexTTS 在六大核心场景的落地实践
一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...
