Android开发高频面试题之——Android篇
Android开发高频面试题之——Android篇
Android开发高频面试题之——Java基础篇
Android开发高频面试题之——Kotlin基础篇
Android开发高频面试题之——Android基础篇
1. Activity启动模式
- standard 标准模式,每次都是新建Activity实例。
- singleTop 栈顶复用。如果要启动的Activity已经处于任务栈顶,则直接复用不会新建Activity实例,此时会调用onNewIntent方法。如果栈内不存在或者不在栈顶。则会新建Activity实例。
- singleTask 栈内单例。如果任务栈内已经存在Activity实例,则直接复用。如果不在栈顶,则把该activity实例之上的全部出栈,让自身位于栈顶。此时会调用onNewIntent方法。
- singleInstance 新建任务栈栈内唯一。应用场景:来电话界面,即使来多个电话也只创建一个Activity;
2. Activity生命周期
- 启动状态(Starting):Activity的启动状态很短暂,当Activity启动后便会进入运行状态(Running)。
- 运行状态(Running):Activity在此状态时处于屏幕最前端,它是可见、有焦点的,可以与用户进行交互。如单击、长按等事件。即使出现内存不足的情况,Android也会先销毁栈底的Activity,来确保当前的Activity正常运行。
- 暂停状态(Paused):在某些情况下,Activity对用户来说仍然可见,但它无法获取焦点,用户对它操作没有没有响应,此时它处于暂停状态。例如,当前Activity弹出Dialog,或者新启动Activity为透明的Activity等情况。
- 停止状态(Stopped):当Activity完全不可见时,它处于停止状态,但仍然保留着当前的状态和成员信息。如系统内存不足,那么这种状态下的Activity很容易被销毁。
- 销毁状态(Destroyed):当Activity处于销毁状态时,将被清理出内存。
Activity的生命周期
- onCreate() : 在Activity创建时调用,通常做一些初始化设置,不可以执行耗时操作。;
- onNewIntent()*:注意 !!只有当 当前activity实例已经处于任务栈顶,并且使用启动模式为singleTop或者SingleTask再次启动Activity时才会调用此方法。此时不会走OnCreate(),而是会执行onNewIntent()。因为activity不需要创建而是直接复用。
- onStart(): 在Activity即将可见时调用;可以做一些动画初始化的操作。
- onRestoreInstanceState()*:注意 !!当app异常退出重建时才会调用此方法。可以在该方法中恢复以保存的数据。
- onResume(): 在Activity已可见,获取焦点开始与用户交互时调用;当Activity第一次启动完成或者当前Activity被遮挡住一部分(进入了onPause())重新回到前台时调用,比如弹窗消失。当onResume()方法执行完毕之后Activity就进入了运行状态。根据官方的建议,此时可以做开启动画和独占设备的操作。
- onPause(): 在当前Activity被其他Activity覆盖或锁屏时调用;Activity停止但是当前Activity还是处于用户可见状态,比如出现弹窗;在onPause()方法中不能进行耗时操作(当前Activity通过Intent启动另一个Activity时,会先执行当前Activity的onPause()方法,再去执行另一个Activity的生命周期)
- onSaveInstanceState():注意 !! 只有当app可能会异常销毁时才会调用此方法保存activity数据。以便于activity重建时恢复数据
Activity的onSaveInstanceState回调时机,取决于app的targetSdkVersion:
targetSdkVersion低于11的app,onSaveInstanceState方法会在Activity.onPause之前回调;
targetSdkVersion低于28的app,则会在onStop之前回调;
28之后,onSaveInstanceState在onStop回调之后才回调。 - onStop() : 在Activity完全被遮挡对用户不可见时调用(在onStop()中做一些回收资源的操作)
- onDestroy() :在Activity销毁时调用;
- onRestart() : 在Activity从停止状态再次启动时调用;处于stop()状态也就是完全不可见的Activity重新回到前台时调用(重新回到前台不会调用onCreate()方法,因为此时Activity还未销毁)
Activity横竖屏切换生命周期
横竖屏切换涉及到的是Activity的android:configChanges属性;
android:configChanges可以设置的属性值有:
orientation:消除横竖屏的影响
keyboardHidden:消除键盘的影响
screenSize:消除屏幕大小的影响
- 设置Activity的android:configChanges属性为orientation或者orientation|keyboardHidden或者不设置这个属性的时候,横竖屏切换会重新调用各个生命周期方法,切横屏时会执行1次,切竖屏时会执行1次;
- 设置Activity的属性为 android:configChanges=“orientation|keyboardHidden|screenSize” 时,横竖屏切换不会重新调用各个生命周期方法,只会执行onConfigurationChanged方法;
3. 了解Service吗
Service一般用于没有ui界面的长期服务。
Service有两种启动方式
- StartService 这种方式启动的Service生命周期和启动实例无关。启动后会一直存在,直到app退出,或者调用stopService或者stopSelf。生命周期为onCreate-》onStartCommand-》onDestroyed。
- 多次启动StartService。onStartCommand会调用多次
- bindService 这种方式启动的Service和生命周期会和调用者绑定。一旦调用者结束,Service也会一起结束。生命周期为onCreate-》onBind-》onUnbind-》onDestroyed
如何保证Service不被杀死
- onStartCommand方式中,返回START_STICKY或者START_REDELIVER_INTENT
- START_STICKY:如果返回START_STICKY,Service运行的进程被Android系统杀掉之后,Android系统会将该Service依然设置为started状态(即运行状态),会重新创建该Service。但是不再保存onStartCommand方法传入的intent对象
- START_NOT_STICKY:如果返回START_NOT_STICKY,表示当Service运行的进程被Android系统强制杀掉之后,不会重新创建该Service
- START_REDELIVER_INTENT:如果返回START_REDELIVER_INTENT,其返回情况与START_STICKY类似,但不同的是系统会保留最后一次传入onStartCommand方法中的Intent再次保留下来并再次传入到重新创建后的Service onStartCommand方法中
- 提高Service的优先级: 在AndroidManifest.xml文件中对于intent-filter可以通过android:priority = "1000"这个属性设置最高优先级,1000是最高值,如果数字越小则优先级越低,同时适用于广播;
- 在onDestroy方法里重启Service: 当service走到onDestroy()时,发送一个自定义广播,当收到广播 时,重新启动service;
- 提升Service进程的优先级。 进程优先级由高到低:前台进程 一》 可视进程 一》 服务进程 一》 后台进程 一》 空进程
可以使用 startForeground将service放到前台状态,这样低内存时,被杀死的概率会低一些; 系统广播监听Service状态将APK安装到/system/app,变身为系统级应用。
4. 使用过broadcastReceiver吗?
可分为标准广播(无序广播)和有序广播
按照作用范围可分为全局广播和本地广播
按照注册方式可分为静态广播和动态广播
- 标准广播
标准广播(normal broadcasts)是一种完全异步执行的广播,在广播发出之后,所有的BroadcastReceiver几乎都会在同一时刻接收到收到这条广播消息,因此它们之间没有任何先后顺序可言。这种广播的效率会比较高,但同时也意味着它是无法被截断的。 - 有序广播
有序广播(ordered broadcasts)是一种同步执行的广播,在广播发出之后,同一时刻只会有一个BroadcastReceiver能够收到这条广播消息,当这个BroadcastReceiver中的逻辑执行完毕后,广播才会继续传递。所以此时的BroadcastReceiver是有先后顺序的,优先级高的BroadcastReceiver就可以先收到广播消息,并且前面的BroadcastReceiver还可以截断正在传递的广播,这样后面的BroadcastReceiver就无法收到广播消息了。- 清单文件里的android:priority属性的数字大小设置优先级 范围为(-1000到1000)数字越大,优先级越高
- setResultExtras(bundle) 向下游广播接收器传递额外的键值对信息或者**setResultData(“”)**直接传送字符串
- 下游广播通过getResultExtras方法接收信息, getResultData() 方法接收字符串信息
- abortBroadcast() 进行截断
<receiverandroid:name=".broadcast.MyHaveBroadcastReceiver02"android:exported="true"><intent-filter android:priority="003"><action android:name="my_have_broadcast_receiver"></action></intent-filter></receiver>
/*** 有序广播*/
public class MyHaveBroadcastReceiver02 extends BroadcastReceiver {private static final String TAG = "MyHaveBroadcastReceiver02";@Overridepublic void onReceive(Context context, Intent intent) {if (intent != null) {Bundle extras = intent.getExtras();String data = "";if (extras != null) {data = extras.getString("name3");/*** 2.1有序广播可以通过setResultExtras向下游广播接收器传递数据*/extras.putString("name2", "喊你速速到龙阳路集合");setResultExtras(extras);/*** 2.2有序广播可以通过setResultData向下游广播接收器传递字符串*/setResultData("2号口的信息");}Log.d(TAG, "MyHaveBroadcastReceiver02 onReceive" + data);/*** 1.有序广播可以通过abortBroadcast();方法对广播进行截断*/
// abortBroadcast();}}
}
- 本地广播:发送的广播事件不被其他应用程序获取,也不能响应其他应用程序发送的广播事件。本地广播只能被动态注册,不能静态注册。动态注册或发送时时需要用到LocalBroadcastManager。
- 全局广播:发送的广播事件可被其他应用程序获取,也能响应其他应用程序发送的广播事件(可以通过 exported–是否监听其他应用程序发送的广播 在清单文件中控制) 全局广播既可以动态注册,也可以静态注册。
- 静态广播
静态广播在清单文件AndroidMainfest.xml中注册,生命周期随系统,不受Activity生命周期影响,即使进程被杀死,仍然能收到广播,因此也可以通过注册静态广播做一些拉起进程的事。随着Android版本的增大,Android系统对静态广播的限制也越来越严格,一般能用动态广播解决的问题就不要用静态广播。 - 动态广播
动态广播不需要在AndroidManifest.xml文件中进行注册,动态注册的广播受Activity声明周期的影响,Activity消亡,广播也就不复存在。动态广播在需要接受广播的Activity中进行注册和解注册。
5. 说说你对handler的理解
Handler是Android用来解决线程间通讯问题的消息机制。Handler消息机制分为四个部分。
- Handler 消息的发送者和处理者
- Message 消息实体 消息的载体和携带者。
- MessageQueen 消息队列,使用双向链表实现,是存放消息的队列。
- Looper 消息循环器,不停的从消息队列中中取出消息。
如何使用Handler?
- 使用Handler需要一个Looper环境,在主线程直接新建Handler实例然后实现handleMessage方法,然后在需要发送消息的地方,使用handler.sendMessage等方法即可。
private static class MyHandler extends Handler {private final WeakReference<MainActivity> mTarget;public MyHandler(MainActivity activity) {mTarget = new WeakReference<MainActivity>(activity);}@Overridepublic void handleMessage(@NonNull Message msg) {super.handleMessage(msg);HandlerActivity activity = weakReference.get();super.handleMessage(msg);if (null != activity) {//执行业务逻辑if (msg.what == 0) {Log.e("myhandler", "change textview");MainActivity ma = mTarget.get();ma.textView.setText("hahah");}Toast.makeText(activity,"handleMessage",Toast.LENGTH_SHORT).show();}}}private Handler handler1 = new MyHandler(this);new Thread(new Runnable() {@Overridepublic void run() {handler1.sendEmptyMessage(0);}}).start();
- 在子线程使用需要先创建Looper环境,调用Looper.prepare(),然后再创建Handler。最后在调用Looper.loop()启动消息循环。子线程Handler不使用时要调用handler.getLooper().quitSafely()退出Looper否则会阻塞。
private static class MyHandler extends Handler {@Overridepublic void handleMessage(@NonNull Message msg) {super.handleMessage(msg);if (msg.what == 0) {Log.e("child thread", "receive msg from main thread");}}}private Handler handler1;@Overrideprotected void onCreate(@Nullable Bundle savedInstanceState) { new Thread(new Runnable() {@Overridepublic void run() {Looper.prepare(); //准备Looper环境handler1 = new MyHandler();Looper.loop(); //启动LooperLog.e("child thread", "child thread end");}}).start();handler1.sendEmptyMessage(0);handler1.getLooper().quitSafely();//子线程Handler不用时,退出Looper
}
主线程使用Handler为什么不用Looper.prepare()?
因为在app启动时,ActivityThread的Main方法里帮我们调用了Looper.prepareMainLooper()。并且最后调用了Looper.loop()
启动了主线程。
public static void main(String[] args) {Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");// Install selective syscall interceptionAndroidOs.install();// CloseGuard defaults to true and can be quite spammy. We// disable it here, but selectively enable it later (via// StrictMode) on debug builds, but using DropBox, not logs.CloseGuard.setEnabled(false);Environment.initForCurrentUser();// Make sure TrustedCertificateStore looks in the right place for CA certificatesfinal File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());TrustedCertificateStore.setDefaultUserDirectory(configDir);// Call per-process mainline module initialization.initializeMainlineModules();Process.setArgV0("<pre-initialized>");Looper.prepareMainLooper();// Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.// It will be in the format "seq=114"long startSeq = 0;if (args != null) {for (int i = args.length - 1; i >= 0; --i) {if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {startSeq = Long.parseLong(args[i].substring(PROC_START_SEQ_IDENT.length()));}}}ActivityThread thread = new ActivityThread();thread.attach(false, startSeq);if (sMainThreadHandler == null) {sMainThreadHandler = thread.getHandler();}if (false) {Looper.myLooper().setMessageLogging(newLogPrinter(Log.DEBUG, "ActivityThread"));}// End of event ActivityThreadMain.Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);Looper.loop();throw new RuntimeException("Main thread loop unexpectedly exited");}
简述一下Handler的工作流程
- Handler使用SendMessage或者post等方法。最终都会调用MessageQueue的enqueueMessage()方法。将消息按照执行时间先后顺序入队。
- Looper里面是个死循环,不停地在队列中通过MessageQueue.next()方法取出消息,取出消息后,通过msg.target.dispatchMessage() 方法分发消息。先交给msg消息的runnable处理,再交给Handler的Callable处理,最后再交给Handler实现的handleMessage方法处理
public void dispatchMessage(@NonNull Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}}
一个线程中最多有多少个Handler,Looper,MessageQueue?
- 一个线程可以有多个Handler
- 一个handler只能有一个Looper和一个MessageQueen
因为创建Handler必须有Looper环境,而Looper只能通过Looper.prepare和Looper.prepareMainLooper来创建。同时将Looper实例存放到线程局部变量sThreadLocal(ThreadLocal)中,也就是每个线程有自己的Looper。在创建Looper的时候也创建了该线程的消息队列,prepareMainLooper会判断sMainLooper是否有值,如果调用多次,就会抛出异常,所以主线程的Looper和MessageQueue只会有一个。同理子线程中调用Looper.prepare()时,会调用prepare(true)方法,如果多次调用,也会抛出每个线程只能由一个Looper的异常,总结起来就是每个线程中只有一个Looper和MessageQueue。
public static void prepare() {prepare(true);}private static void prepare(boolean quitAllowed) {if (sThreadLocal.get() != null) {throw new RuntimeException("Only one Looper may be created per thread");}sThreadLocal.set(new Looper(quitAllowed));}
Looper死循环为什么不会导致应用ANR、卡死,会耗费大量资源吗?
线程其实就是一段可执行的代码,当可执行的代码执行完成后,线程的生命周期便该终止了,线程退出。而对于主线程,我们是绝不希望会被运行一段时间,自己就退出,那么如何保证能一直存活呢?简单做法就是可执行代码是能一直执行下去的,死循环便能保证不会被退出
- ANR 产生的原因是主线程没有及时响应用户的操作。也就是主线程执行某个耗时操作来不及处理UI消息。
- 而Looper一直循环,就是在不断的检索消息,与主线程无法响应用户操作没有任何冲突
- Android是基于消息处理机制的,用户的行为都在这个Looper循环中,正是有了主线程Looper的不断循环,才有app的稳定运行。
- 简单来说looper的阻塞表明没有事件输入,而ANR是由于有事件没响应导致,所以looper的死循环并不会导致应用卡死。
主线程的死循环并不消耗 CPU 资源,这里就涉及到 Linux pipe/epoll机制,简单说就是在主线程的 MessageQueue 没有消息时,便阻塞在 loop 的 queue.next() 中的 nativePollOnce() 方法里,此时主线程会释放 CPU 资源进入休眠状态,直到下个消息到达或者有事务发生,通过往 pipe 管道写端写入数据来唤醒主线程工作。这里采用的 epoll 机制,是一种IO多路复用机制,可以同时监控多个描述符,当某个描述符就绪(读或写就绪),则立刻通知相应程序进行读或写操作,本质同步I/O,即读写是阻塞的。 所以说,主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资源。
Handler同步屏障了解吗
同步屏障是为了保证异步消息的优先执行,一般是用于UI绘制消息,避免主线程消息太多,无法及时处理UI绘制消息,导致卡顿。
- 同步消息 一般的handler发送的消息都是同步消息
- 异步消息 Message标记为异步的消息
- 可以调用 Message#setAsynchronous() 直接设置为异步 Message
- 可以用异步 Handler 发送 使用 Handler.createAsync() 创建异步Handler
public static Handler createAsync(@NonNull Looper looper) {if (looper == null) throw new NullPointerException("looper must not be null");return new Handler(looper, null, true);}
- 同步屏障 在 MessageQueue 的 某个位置放一个 target 属性为 null 的 Message ,确保此后的非异步 Message 无法执行,只能执行异步 Message。
当 Looper轮循MessageQueue 遍历 Message发现建立了同步屏障的时候,会去跳过其他Message,读取下个 async 的 Message 并执行,屏障移除之前同步 Message 都会被阻塞。
比如屏幕刷新 Choreographer 就使用到了同步屏障 ,确保屏幕刷新事件不会因为队列负荷影响屏幕及时刷新。
注意: 同步屏障的添加或移除 API MessageQueue.postSyncBarrier并未对外公开,App 需要使用的话需要依赖反射机制
try {MessageQueue queue=handler.getLooper().getQueue();Method method=MessageQueue.class.getDeclaredMethod("postSyncBarrier");method.setAccessible(true);token= (int) method.invoke(queue);} catch (Exception e) {e.printStackTrace();}try {MessageQueue queue=handler.getLooper().getQueue();Method method=MessageQueue.class.getDeclaredMethod("removeSyncBarrier",int.class);method.setAccessible(true);method.invoke(queue,token);} catch (Exception e) {e.printStackTrace();}
Handler 为什么可能导致内存泄露?如何避免?
持有 Activity 实例的匿名内部类或内部类的 生命周期 应当和 Activity 保持一致,否则产生内存泄露的风险。
如果 Handler 使用不当,将造成不一致,表现为:匿名内部类或内部类写法的 Handler、Handler$Callback、Runnable,或者Activity 结束时仍有活跃的 Thread 线程或 Looper 子线程
具体在于:异步任务仍然活跃或通过发送的 Message 尚未处理完毕,将使得内部类实例的 生命周期被错误地延长 。造成本该回收的 Activity 实例 被别的 Thread 或 Main Looper 占据而无法及时回收 (活跃的 Thread 或 静态属性 sMainLooper 是 GC Root 对象)
建议的做法:
- 无论是 Handler、Handler$Callback 还是 Runnable,尽量采用 静态内部类 + 弱引用 的写法,确保尽管发生不当引用的时候也可以因为弱引用能清楚持有关系
- 另外在 Activity 销毁的时候及时地 终止 Thread、停止子线程的 Looper 或清空 Message ,确保彻底切断 Activity 经由 Message 抵达 GC Root 的引用源头(Message 清空后会其与 Handler 的引用关系,Thread 的终止将结束其 GC Root 的源头)
Handler是如何实现线程间通讯的
- handler是消息的发送者也是处理者。发送消息时,msg.target会标记为自身。插入MessageQueen后,被Looper取出后会通过msg.target.dispatchMessage去分发给对应的Handler去处理。
Handler消息处理的优先级
public void dispatchMessage(@NonNull Message msg) {if (msg.callback != null) {handleCallback(msg);} else {if (mCallback != null) {if (mCallback.handleMessage(msg)) {return;}}handleMessage(msg);}}
可以看出优先级是Message.CallBack->Handler.callback->Handler.handleMessage
有时候面试官也会问Runnable->Callable->handleMessage
post方法就是runnable
Handler构造传入Callback就是Callable
send方法是handleMessage
如何正确或Message实例
- 通过 Message 的静态方法 Message.obtain() 获取;
- 通过 Handler 的公有方法 handler.obtainMessage()
- 默认大小是50
Message使用享元设计模式,里面有一个spool指向一个Message对象,还有一个next指向下一个Message,维护了一个链表实现的对象池,obtain的时候在表头头取Message,在Message回收的时候在表头添加一个Message。
Android 为什么不允许并发访问 UI?
Android 中 UI 非线程安全,并发访问的话会造成数据和显示错乱。
此限制的检查始于ViewRootImpl#checkThread(),其会在刷新等多个访问 UI 的时机被调用,去检查当前线程,非主线程的话抛出异常。(实际上并不是检查主线程。而是检查UI的更新线程是否与UI的创建线程一致,因为UI是在主线程创建的,所以也只能在主线程更新)
而 ViewRootImpl 的创建在 onResume() 之后,也就是说如果在 onResume() 执行前启动线程访问 UI 的话是不会报错的。
了解ThreadLocal吗
- Thread中会维护一个类似HashMap的东西,然后用ThreadLocal对象作为key,value就是要存储的变量值,这样就保证了存储数据的唯一性)
- ThreadLocal为每个线程都提供了变量的副本,使得每个线程在某一时间访问到的并非同一个对象,这样就隔离了多个线程对数据的数据共享。
- ThreadLocal 内部通过 ThreadLocalMap 持有 Looper,key 为 ThreadLocal 实例本身,value 即为 Looper 实例
每个 Thread 都有一个自己的 ThreadLocalMap,这样可以保证每个线程对应一个独立的 Looper 实例,进而保证 myLooper() 可以获得线程独有的 Looper。让每个线程方便程获取自己的 Looper 实例
ThreadLocal与内存泄漏
- 在线程池中使用ThreadLocal可能会导致内存泄漏,原因是线程池中线程的存活时间太长,往往和程序都是同生共死的,这就意味着Thread持有的ThreadLocalMap一直都不会被回收,再加上ThreadLocalMap中的Entry对ThreadLocal是弱引用,所以只要ThreadLocal结束了自己的生命周期是可以被回收掉的。但是Entry中的Value却是被Entry强引用的,所以即便Value的生命周期结束了,Value也是无法被回收的,从而导致内存泄漏。
ExecutorService es;
ThreadLocal tl;
es.execute(()->{
//ThreadLocal增加变量
tl.set(obj);
try{
//业务代冯
}finally{
//于动消ThreadLocal
tl.remove();}
});
Message 的执行时刻如何管理
- 发送的 Message 都是按照执行时刻 when 属性的先后管理在 MessageQueue 里
延时 Message 的 when 等于调用的当前时刻和 delay 之和
非延时 Message 的 when 等于当前时刻(delay 为 0) - 插队 Message 的 when 固定为 0,便于插入队列的 head之后 MessageQueue 会根据 读取的时刻和 when 进行比较将 when 已抵达的出队,尚未抵达的计算出 当前时刻和目标 when 的插值 ,交由 Native 等待对应的时长,时间到了自动唤醒继续进行 Message 的读取
- 事实上,无论上述哪种 Message 都不能保证在其对应的 when 时刻执行,往往都会延迟一些!因为必须等当前执行的 Message 处理完了才有机会读取队列的下一个 Message。
比如发送了非延时 Message,when 即为发送的时刻,可它们不会立即执行。都要等主线程现有的任务(Message)走完才能有机会出队,而当这些任务执行完 when 的时刻已经过了。假使队列的前面还有其他 Message 的话,延迟会更加明显!
Looper等待如何准确唤醒的?
读取合适 Message 的 MessageQueue#next() 会因为 Message 尚无或执行条件尚未满足进行两种等的等待:
-
无限等待
尚无 Message(队列中没有 Message 或建立了同步屏障但尚无异步 Message)的时候,调用 Natvie 侧的 pollOnce() 会传入参数 -1 。
Linux 执行 epoll_wait() 将进入无限等待,其等待合适的 Message 插入后调用 Native 侧的 wake() 唤醒 fd 写入事件触发唤醒 MessageQueue 读取的下一次循环 -
有限等待
有限等待的场合将下一个 Message 剩余时长作为参数 交给 epoll_wait(),epoll 将等待一段时间之后 自动返回 ,接着回到 MessageQueue 读取的下一次循环。
Handler机制原理
-
Looper 准备和开启轮循:
尚无 Message 的话,调用 Native 侧的 pollOnce() 进入 无限等待
存在 Message,但执行时间 when 尚未满足的话,调用 pollOnce() 时传入剩余时长参数进入 有限等待
Looper#prepare() 初始化线程独有的 Looper 以及 MessageQueue
Looper#loop() 开启 死循环 读取 MessageQueue 中下一个满足执行时间的 Message -
Message 发送、入队和出队:
Native 侧如果处于无限等待的话:任意线程向 Handler 发送 Message 或 Runnable 后,Message 将按照 when 条件的先后,被插入 Handler 持有的 Looper 实例所对应的 MessageQueue 中 适当的位置 。MessageQueue 发现有合适的 Message 插入后将调用 Native 侧的 wake() 唤醒无限等待的线程。这将促使 MessageQueue 的读取继续 进入下一次循环 ,此刻 Queue 中已有满足条件的 Message 则出队返回给 Looper
Native 侧如果处于有限等待的话:在等待指定时长后 epoll_wait 将返回。线程继续读取 MessageQueue,此刻因为时长条件将满足将其出队 -
handler处理 Message 的实现:
Looper 得到 Message 后回调 Message 的 callback 属性即 Runnable,或依据 target 属性即 Handler,去执行 Handler 的回调。存在 mCallback 属性的话回调 Handler$Callback反之,回调 handleMessage()
6. 了解View绘制流程吗?
Activity启动走完onResume方法后,在ActivityThread#handleResumeActivity会进行window的添加。
window添加过程会调用 ViewRootImpl的setView() 方法,setView()方法会调用 requestLayout() 方法来请求绘制布局,requestLayout()方法内部又会走到 scheduleTraversals() 方法,最后会走到 performTraversals() 方法,接着到了我们熟知的测量、布局、绘制三大流程了。
- 所有UI的变化都是走到 ViewRootImpl的scheduleTraversals() 方法。
//ViewRootImpl.javavoid scheduleTraversals() {if (!mTraversalScheduled) {//此字段保证同时间多次更改只会刷新一次,例如TextView连续两次setText(),也只会走一次绘制流程mTraversalScheduled = true;//添加同步屏障,屏蔽同步消息,保证VSync到来立即执行绘制mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();//mTraversalRunnable是TraversalRunnable实例,最终走到run(),也即doTraversal();mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);if (!mUnbufferedInputDispatch) {scheduleConsumeBatchedInput();}notifyRendererOfFramePending();pokeDrawLockIfNeeded();}}final class TraversalRunnable implements Runnable {@Overridepublic void run() {doTraversal();}}final TraversalRunnable mTraversalRunnable = new TraversalRunnable();void doTraversal() {if (mTraversalScheduled) {mTraversalScheduled = false;//移除同步屏障mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);...//开始三大绘制流程performTraversals();...}}
- 首先使用mTraversalScheduled字段保证同时间多次更改只会刷新一次,例如TextView连续两次setText(),也只会走一次绘制流程。
- 然后把当前线程的消息队列Queue添加了同步屏障,这样就屏蔽了正常的同步消息,保证VSync到来后立即执行绘制,而不是要等前面的同步消息。后面会具体分析同步屏障和异步消息的代码逻辑。
- 调用了mChoreographer.postCallback()方法,发送一个会在下一帧执行的回调,即在下一个VSync到来时会执行TraversalRunnable–>doTraversal()—>performTraversals()–>绘制流程。
mChoreographer,是在ViewRootImpl的构造方法内使用Choreographer.getInstance()创建:
Choreographer mChoreographer;
//ViewRootImpl实例是在添加window时创建
public ViewRootImpl(Context context, Display display) {...mChoreographer = Choreographer.getInstance();...
}
public static Choreographer getInstance() {return sThreadInstance.get();}private static final ThreadLocal<Choreographer> sThreadInstance =new ThreadLocal<Choreographer>() {@Overrideprotected Choreographer initialValue() {Looper looper = Looper.myLooper();if (looper == null) {//当前线程要有looper,Choreographer实例需要传入throw new IllegalStateException("The current thread must have a looper!");}Choreographer choreographer = new Choreographer(looper, VSYNC_SOURCE_APP);if (looper == Looper.getMainLooper()) {mMainInstance = choreographer;}return choreographer;}};
private Choreographer(Looper looper, int vsyncSource) {mLooper = looper;//使用当前线程looper创建 mHandlermHandler = new FrameHandler(looper);//USE_VSYNC 4.1以上默认是true,表示 具备接受VSync的能力,这个接受能力就是FrameDisplayEventReceivermDisplayEventReceiver = USE_VSYNC? new FrameDisplayEventReceiver(looper, vsyncSource): null;mLastFrameTimeNanos = Long.MIN_VALUE;// 计算一帧的时间,Android手机屏幕是60Hz的刷新频率,就是16msmFrameIntervalNanos = (long)(1000000000 / getRefreshRate());// 创建一个链表类型CallbackQueue的数组,大小为5,//也就是数组中有五个链表,每个链表存相同类型的任务:输入、动画、遍历绘制等任务(CALLBACK_INPUT、CALLBACK_ANIMATION、CALLBACK_TRAVERSAL)mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];for (int i = 0; i <= CALLBACK_LAST; i++) {mCallbackQueues[i] = new CallbackQueue();}// b/68769804: For low FPS experiments.setFPSDivisor(SystemProperties.getInt(ThreadedRenderer.DEBUG_FPS_DIVISOR, 1));}
安排任务—postCallback
回头看mChoreographer.postCallback(Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null)方法,注意到第一个参数是CALLBACK_TRAVERSAL,表示回调任务的类型,共有以下5种类型:
//输入事件,首先执行
public static final int CALLBACK_INPUT = 0;
//动画,第二执行
public static final int CALLBACK_ANIMATION = 1;
//插入更新的动画,第三执行
public static final int CALLBACK_INSETS_ANIMATION = 2;
//绘制,第四执行
public static final int CALLBACK_TRAVERSAL
相关文章:

Android开发高频面试题之——Android篇
Android开发高频面试题之——Android篇 Android开发高频面试题之——Java基础篇 Android开发高频面试题之——Kotlin基础篇 Android开发高频面试题之——Android基础篇 1. Activity启动模式 standard 标准模式,每次都是新建Activity实例。singleTop 栈顶复用。如果要启动的A…...

禁用拷贝构造函数和赋值构造函数
在C中,禁用拷贝构造函数和拷贝赋值操作符的方式通常是为了防止类的对象被意外复制,这对于那些管理独占资源或不应被复制的对象尤为重要。 class LatActiveControlState : public LatState { public:LatActiveControlState() : LatState(LatS_ActiveCont…...

OneDrive for Business with Office Online 部署方案
目录 前言 部署准备 需求分析 用户需求 技术需求 环境准备 硬件要求 软件要求 许可计划 OneDrive for Business 部署 前期准备 域名配置 Azure AD 配置 安装与配置 安装 OneDrive 同步客户端 配置 OneDrive 组策略 数据迁移 Office Online 部署 前期准备 安…...

win10 win11 设置文件权限以解决Onedrive不能同步问题
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…...

Unity DOTS系列之IJobChunk来迭代处理数据
最近DOTS发布了正式的版本, 我们来分享一下System中如何在System中使用IJobChunk来迭代处理World中的数据,方便大家上手学习掌握Unity DOTS开发。 再回顾一次基于ArcheType Chunk内存管理 我们先再次回顾以下基于ArcheType的Chunk内存管理。每一类Entity都是由一些…...

哈希——哈希表
回顾/本期梗概 上期我们学习了哈希——字符串哈希(空降链接),本期我们将学习哈希中的哈希表。 1、哈希表原理 (1)使用数组下标直接标记元素 哈希表(也叫数列表):是一种高效的、通过把…...

简单了解 JVM
目录 ♫什么是JVM ♫JVM的运行流程 ♫JVM运行时数据区 ♪虚拟机栈 ♪本地方法栈 ♪堆 ♪程序计数器 ♪方法区/元数据区 ♫类加载的过程 ♫双亲委派模型 ♫垃圾回收机制 ♫什么是JVM JVM 是 Java Virtual Machine 的简称,意为 Java虚拟机。 虚拟机是指通过软件模…...

已经30岁了,想转行从头开始现实吗?什么样的工作算好工作?
我是29岁那年,完成从转行裸辞副业的职业转型。 如果你把职业生涯看成是从现在开始30岁,到你退休那年,中间这么漫长的30年,那么30岁转行完全来得及; 如果你觉得必须在什么年纪,什么时间内必须完成赚到几十…...

快速理解docker(一)docker 简介
在当今快速迭代的软件开发环境中,如何高效地部署、管理和扩展应用程序成为了开发者们面临的重大挑战。Docker,作为一款开源的容器化平台,凭借其轻量级、可移植性和易于部署的特性,迅速成为了解决这些挑战的热门选择。本文将带您走…...

RHCS认证-Linux(RHel9)-Ansible
文章目录 一、ansible 简介二 、ansible部署三、ansible服务端测试四 、ansible 清单inventory五、Ad-hot 点对点模式六、YAML语言模式七、RHCS-Ansible附:安装CentOS-Stream 9系统7.1 ansible 执行过程7.2 安装ansible,ansible-navigator7.2 部署ansibl…...

【Python】Spyder:科学 Python 开发环境
在数据科学和科学计算领域,Python 已经成为了一个不可或缺的工具。为了提高开发效率和改善编程体验,一个功能强大且用户友好的开发环境是必需的。Spyder(Scientific Python Development Environment)正是这样一个为科学计算和数据…...

SpringBootWeb响应
2. 响应 前面我们学习过HTTL协议的交互方式:请求响应模式(有请求就有响应) 那么Controller程序呢,除了接收请求外,还可以进行响应。 2.1 ResponseBody 在我们前面所编写的controller方法中,都已经设置了…...

CMake 构建Qt程序弹出黑色控制台
CMake 构建Qt程序弹出黑色控制台...

虚拟机centos_7 配置教程(镜像源、配置centos、静态ip地址、Finalshell远程操控使用)
文章目录 一、下载镜像源(准备工作)1、开源网站2、下载 二、VMware配置centos三、配置静态IP地址四、Finalshell使用1、下载Finalshell2、连接虚拟机 五、谢谢观看! 一、下载镜像源(准备工作) 1、开源网站 有许多开源…...

git 删除 git push 失败的记录
文章目录 问题分析 问题 git push 失败后如何清理 commit 提交的内容 当我们 git push 失败后,如果下次有新的改动需要push时,会出现如下报错 分析 找到需要回退的那次commit的 哈希值 git log然后就回退到了指定版本,这个时候再把新修改…...

【专题】2024年中国白酒行业数字化转型研究报告合集PDF分享(附原数据表)
原文链接:https://tecdat.cn/?p37755 消费人群趋于年轻化,消费需求迈向健康化,消费场景与渠道走向多元化,这些因素共同驱动企业凭借数据能力来适应市场的变化。从消费市场来看,消费群体、需求、场景及渠道皆展现出与…...

哪款品牌充电宝性价比比较高?五款性价比绝佳充电宝推荐
在现代生活中,充电宝已经成为我们日常出行和工作的必备品。然而,面对市场上琳琅满目的充电宝品牌,大家往往难以抉择。尤其是在近期,充电宝不合格产品的数量持续上升,据最新抽查结果显示,不合格率已经上升到…...

巨坑!!华为大数据平台sparksql,连接gauss200数据库
最近用华为大数据平台fusion6.5平台,写了一个sparksql 读取gauss200的MPP数据库的程序。 首先将spark 相关的jar依赖包,必须在华为大数据平台的客户端的spark/jars 这个文件里面去找到然后添加到idea 依赖里面。打包要把整体包打在里面。 核心代码片段…...

BGP相关知识笔记
技术背景: 在只有IGP(诸如OSPF、IS-IS、RIP等协议,因为最初是被设计在一个单域中进行一个路由操纵,因此被统一称为Interior Gateway Protocol,内部网关协议)的时代,域间路由无法实现一个全局路由…...

在 Windows 上运行 Vue 项目时解决 ‘NODE_OPTIONS‘ 错误
在 Windows 上运行 Vue 项目时解决 ‘NODE_OPTIONS’ 错误 在 Windows 系统上启动 Vue 项目时,遭遇报错。具体报错信息如下: ‘NODE_OPTIONS‘ 不是内部或外部命令,也不是可运行的程序或批处理文件。这个错误通常意味着 Windows 系统无法识…...

面试真题:谈一谈Mysql的分库分表
分表和分库是什么?有什么区别? 分库是一种水平扩展数据库的技术,将数据根据一定规则划分到多个独立的数据库中。每个数据库只负责存储部分数据,实现了数据的拆分和分布式存储。分库主要是为了解决并发连接过多,单机 my…...

玄机靶场--蚁剑流量
木马的连接密码是多少 黑客执行的第一个命令是什么 id 黑客读取了哪个文件的内容,提交文件绝对路径 /etc/passwd 黑客上传了什么文件到服务器,提交文件名 黑客上传的文件内容是什么 黑客下载了哪个文件,提交文件绝对路径 蚁剑流量特征总结 …...

uniapp map设置高度为100%后,会拉伸父容器的高度
推荐学习文档 golang应用级os框架,欢迎stargolang应用级os框架使用案例,欢迎star案例:基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识,这里有免费的golang学习笔…...

CICD从无到会
一 CICD是什么 CI/CD 是指持续集成(Continuous Integration)和持续部署(Continuous Deployment)或持续交付(Continuous Delivery) 1.1 持续集成(Continuous Integration) 持续集成是…...

责任链模式优化 文章发布的接口(长度验证,敏感词验证,图片验证等环节) 代码,示例
需求:后端需要提供一个文章发布的接口,接口中需要先对文章内容进行如下校验,校验通过后才能发布 1. 文章长度不能超过1万个字符 2. 不能有敏感词 3. 文章中图片需要合规 责任链相当于一个链条一样,链条上有很多节点,节…...

Java流程控制语句——条件控制语句详解(附有流程图)#Java条件控制语句有哪些?#if-else、switch
在 Java 编程中,条件控制语句用于控制程序的执行路径,决定根据某些条件来选择执行某段代码或跳过某段代码。它们是 Java 编程的重要组成部分,帮助开发者根据不同的输入、状态或数据流来编写更加灵活和动态的代码。在本文中,我们将…...

十一、SOA(SOA的具体设计模式)
我们现在深入学习SOA的具体设计模式。SOA架构中的设计模式主要是指导服务如何设计、实现、部署和管理,确保服务的松耦合、高可用性、扩展性和复用性。SOA常见的设计模式可以分为以下几类: 1. 服务层次设计模式 1.1. 基础服务(Fundamental S…...

Mybatis原理
一. 为什么要使用Mybatis? 1.1 jdbc的使用步骤 首先,在pox.xml中引入MySQl驱动的依赖 第一步, Class.forName 注册驱动 第二步,获取一个Connection。 第三步,创建一个Statement对象。 第四步,execute()方法执行SQL。execute()方…...

黑马头条day3-2 自媒体文章管理
前边还有一个 素材列表查询 没什么难度 就略过了 查询所有频道和查询自媒体文章也是和素材列表查询类似 就是普通的查询 所以略过了 文章发布 这个其实挺复杂的 一共三张表 一个文章表 一个素材表 一个文章和素材的关联表 区分修改与新增就是看是否存在id 如果是保存草稿…...

JinDouYun性能测试工具使用方法
1.功能介绍 2. 安卓端支持安卓6及以上的版本,ios支持大部分版本 3. 可以测试游戏,视频,普通应用的性能数据,数据精准,低延迟,无侵入 4.工具下载链接 筋斗云 5.后续功能添加,高版本支持&…...