当前位置: 首页 > news >正文

《线性代数》学渣笔记

文章目录

  • 1 行列式
  • 2 矩阵
  • 3 齐次线性方程组
  • 4 非齐次线性方程组
  • 5 公共解问题
  • 6 同解问题
  • 7 抽象型方程组
    • 7.1 矩阵A各行元素之和均为0
    • 7.2 方程组解的个数与秩的关系
    • 7.3 选择题常考
    • 7.4 证线性无关
    • 7.5 证线性相关
    • 7.6 线性方程组的几何意义
    • 7.7 线性表出
  • 8 向量空间
    • 8.1 向量空间中的坐标
    • 8.2 过渡矩阵
    • 8.3 坐标变换
  • 9 特征值特征向量
    • 9.1 施密特正交化
    • 9.2 用特征值和特征向量求A
  • 10 相似
    • 10.1 相似的五个性质
    • 10.2 相似的结论
    • 10.3 相似对角化
  • 11 实对称矩阵(必能相似对角化)
  • 12 正交矩阵
  • 13 二次型
    • 13.1 惯性定理
    • 13.2 配方法
    • 13.3 正交变换法
      • 13.3.1 常规计算
      • 13.3.2 反求参数,A或(f)
      • 13.3.3 最值问题
      • 13.3.4 几何应用
  • 14 合同
    • 14.1 实对称矩阵的合同
  • 15 正定二次型(正定矩阵)
  • 16 反对称矩阵

1 行列式

1.1 克拉默法则

在这里插入图片描述

1.2 基本性质

  1. 交换性质
    行列式的行列互换,行列式的值不变。

  2. 对角矩阵的行列式
    对于对角矩阵(或更一般的上三角矩阵或下三角矩阵),行列式等于对角线上元素的乘积。 ∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ = a 11 a 22 ⋯ a n n \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}= a_{11} a_{22} \cdots a_{nn} a11000a22000ann =a11a22ann

  3. 矩阵乘积的行列式
    两个矩阵相乘的行列式等于它们行列式的乘积。

    det ⁡ ( A B ) = det ⁡ ( A ) det ⁡ ( B ) \det(AB) = \det(A) \det(B) det(AB)=det(A)det(B)

  4. 行列互换的行列式
    交换矩阵的两行(或两列),行列式取相反数。

    det ⁡ ( A ) = − det ⁡ ( B ) \det(A) = -\det(B) det(A)=det(B)

  5. 相同行(或列)的行列式
    如果矩阵的两行(或两列)相同,则该行列式为零。

  6. 比例行(或列)的行列式
    如果矩阵的两行(或两列)成比例,则该行列式为零。

  7. 加法性质
    如果矩阵的某一行(或某一列)是两行(或两列)的和,则行列式等于这两行(或两列)分别替换的行列式之和。

  8. 行列式的行数与列数
    行列式仅对方阵(行数等于列数的矩阵)定义。

  9. 行列式与矩阵的转置
    矩阵的行列式等于其转置矩阵的行列式。

    det ⁡ ( A ) = det ⁡ ( A T ) \det(A) = \det(A^T) det(A)=det(AT)

  10. 单位矩阵的行列式
    单位矩阵的行列式为1。

    det ⁡ ( E ) = 1 \det(E) = 1 det(E)=1

  11. 矩阵的行(或列)倍加法不变性
    对矩阵的某一行(或列)进行倍加(即将该行(或列)加上另一行(或列)的某个倍数)操作,行列式不变。

  12. 矩阵的数乘
    如果将矩阵的某一行(或某一列)乘以一个数 c c c,那么行列式等于原行列式乘以 c c c

    det ⁡ ( c A ) = c n det ⁡ ( A ) \det(cA) = c^n \det(A) det(cA)=cndet(A)

1.3 余子式 M i j M_{ij} Mij

余子式是从一个 n × n n \times n n×n矩阵中,删除某一行和某一列后得到的 ( n − 1 ) × ( n − 1 ) (n-1) \times (n-1) (n1)×(n1)矩阵的行列式。

定义
对于一个矩阵 A A A的元素 a i j a_{ij} aij,其对应的余子式 M i j M_{ij} Mij是指从矩阵 A A A中删除第 i i i行和第 j j j列后得到的子矩阵的行列式。

1.4 代数余子式 A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(1)i+jMij

代数余子式是余子式的带符号版本,用于行列式的展开。具体来说,代数余子式 A i j A_{ij} Aij定义为:

A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(1)i+jMij
∣ A ∣ = ∑ j = 1 n a i j A i j = ∑ i = 1 n a i j A i j |A|=\sum_{j=1}^na_{ij}A_{ij}=\sum_{i=1}^na_{ij}A_{ij} A=j=1naijAij=i=1naijAij

注意:代数余子式 A i j A_{ij} Aij就是伴随矩阵 A ∗ A^* A的矩阵系数
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) T A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}^T A= A11A12A1nA21A22A2nAn1An2Ann T

在这里插入图片描述
在这里插入图片描述

1.5 具体型行列式计算(化为基本型)

1.5.1 主对角线行列式:主对角元素相乘

1.5.2 副对角线行列式:副对角元素相乘并判断正负号

在这里插入图片描述
在这里插入图片描述

1.5.3 拉普拉斯展开式

在这里插入图片描述

1.5.4 范德蒙德行列式:只看第二行,右减左,全都减,减完乘起来

在这里插入图片描述

1.5.5 加边法:没有明显的公共规律,自己补一个公共规律

在这里插入图片描述

1.5.6 递推法(适用于计算异爪型行列式):高阶→低阶

建立两阶或三阶之间的关系,且每阶的元素分布规律必须相同

1.5.7 数学归纳法(适用于证明题):低阶→高阶

  • 第一数学归纳法(验证1个):验证 n = 1 n=1 n=1时成立,再假设 n = k ( k ≥ 2 ) n=k(k≥2) n=kk2时成立,最后证明 n = k + 1 n=k+1 n=k+1时成立,由此推出对任意 n n n成立
  • 第二数学归纳法(验证2个):验证 n = 1 , n = 2 n=1,n=2 n=1n=2时成立,再假设 n < k n<k n<k时成立,最后证明 n = k n=k n=k时成立,由此推出对任意 n n n成立

用数学归纳法证爪型行列式通式:

  1. n = 1 n=1 n=1
  2. n = 2 n=2 n=2
  3. 假设 n < k n<k n<k时成立
  4. n = k n=k n=k时,按第一列展开得通式形式
  5. 得证

1.5.8 一些处理手段

在这里插入图片描述

1.6 抽象型行列式的计算: a i j a_{ij} aij未给出

1.6.1 用行列式性质

1.6.2 用矩阵知识

在这里插入图片描述

1.6.3 用相似理论

在这里插入图片描述

2 矩阵

2.1 转置、逆、伴随的一些关系式

在这里插入图片描述
在这里插入图片描述

2.2 求 A n A^n An

2.2.1 A为方阵,且r(A)=1

在这里插入图片描述

2.2.2 试算 A 2 A^2 A2(或 A 3 A^3 A3),找规律【归纳法→探索、研究精神!】

在这里插入图片描述

2.2.3 A=B+C用二项展开式

在这里插入图片描述

2.2.4 用相似理论

在这里插入图片描述

2.3 矩阵的伴随

在这里插入图片描述
在这里插入图片描述

求法

简单一点求矩阵的伴随,进而用伴随来求矩阵的逆

在这里插入图片描述

在这里插入图片描述

2.4 矩阵的逆

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.5 矩阵的转置

在这里插入图片描述

2.6 初等矩阵(左行右列)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.7 分块矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.8 矩阵方程(含未知矩阵X)

在这里插入图片描述

2.9 矩阵方程求解

在这里插入图片描述

2.10 秩

矩阵的秩是其行秩和列秩的值,而行秩与列秩总是相等的。秩决定了矩阵的行向量或列向量的线性独立性,也影响了线性方程组的解的情况(如是否有解以及解的数量)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在两个向量组中,被表示的向量组的秩不大于表示它的向量组的秩。(即:两向量组中,被表示的向量组的秩不大)

2.11 行向量组等价(两方程组同解问题)

两个行向量组 等价,当且仅当它们能通过一系列初等行变换相互转换。

具体解释

  • 如果矩阵 A A A 和矩阵 B B B 的行向量组等价,这意味着可以通过对 A A A 进行有限次初等行变换,得到 B B B。反之亦然。换句话说, A A A B B B 具有相同的行空间,它们的行向量可以通过相同的线性组合生成。

2.12 维数与向量的关系

  1. 维数

    • 维数 指的是向量中元素的个数。在矩阵中,维数通常指的是向量所在空间的维度。例如,一个在 R m \mathbb{R}^m Rm 空间中的向量有 m m m 个元素。
    • 对于一个线性方程组来说,维数 指的是系数矩阵的行数,也是方程的个数。
  2. 向量个数

    • 向量个数 指的是列向量的个数,通常是系数矩阵的列数,也代表方程中未知数的个数。
  3. 线性相关性

    • 如果矩阵的列数大于行数(向量个数 > 维数),则这些列向量必定线性相关。

假设有一个矩阵 A A A 3 × 4 3 \times 4 3×4 矩阵( 3 3 3 行, 4 4 4 列):

  • 向量的维数是 3 3 3,因为每个列向量有 3 3 3 个元素。
  • 向量的个数是 4 4 4,因为矩阵有 4 4 4 列。
  • 因为 4 > 3 4 > 3 4>3,根据线性代数定理, A A A 的列向量必定是线性相关的。

3 齐次线性方程组

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4 非齐次线性方程组

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5 公共解问题

在这里插入图片描述

6 同解问题

  • 行向量组等价是两个方程组同解的充要条件。如果两个线性方程组的增广矩阵的行向量组是等价的(即通过初等行变换可以互相转换),那么这两个方程组一定有相同的解集。这是因为初等行变换不会改变线性方程组的解。
  • 如果矩阵 A A A B B B 行等价,则存在一个可逆矩阵 P P P 使得 P A = B PA = B PA=B 。这表明可以通过对 A A A 进行初等行变换得到 B B B,而这些初等行变换可以表示为一个可逆矩阵 P P P 作用在 A A A 上。
  • 一个行向量代表一个方程,行向量组的一次初等行变换相当于对方程组做了一次同解变形。由于初等行变换不会改变线性方程组的解集,所以两个增广矩阵行向量组等价,意味着它们对应的方程组有相同的解。
  • 列向量的关系则与方程组是否有解密切相关。
  • 若两个方程组互为线性组合,则两个方程组等价。等价的两个方程组一定同解,但同解的两个方程组不一定等价。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 抽象型方程组

7.1 矩阵A各行元素之和均为0

在这里插入图片描述

7.2 方程组解的个数与秩的关系

在这里插入图片描述

7.3 选择题常考

在这里插入图片描述

7.4 证线性无关

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7.5 证线性相关

在这里插入图片描述

要证线性相关,那么只需要证得有一个系数不为0就能使等式成立即可。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

7.6 线性方程组的几何意义

在这里插入图片描述

在这里插入图片描述
有解情况 \mathbf{有解情况} 有解情况

几何意义代数表达
三平面相交于一点(唯一解) r ( A ) = r ( A ‾ ) = 3 r(A)=r(\overline{A})=3 r(A)=r(A)=3法向量两两正交
三平面相交于一条线 r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两面都不重合)
两平面重合,第三平面与之相交 r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合)
三平面重合 r ( A ) = r ( A ‾ ) = 1 r(A)=r(\overline{A})=1 r(A)=r(A)=1

如果三个平面的法向量两两正交,那么对应的线性方程组有唯一解;若此时引入第四个平面,当且仅当第四个平面与前三个平面相交于同一个点时,方程组有唯一解,除此之外无解

无解情况 \mathbf{无解情况} 无解情况

几何意义代数表达
三平面两两 相交 \mathbf{相交} 相交,且交线相互平行 r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2r(A)=3 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3两两线性无关(任何两个面都不相交)
两平面平行,第三张平面与它们 相交 \mathbf{相交} 相交 r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2r(A)=3 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3中有两个向量线性相关(存在两个面平行但不重合)
三张平面相互平行但不重合 r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两个面都不重合)
两张平面重合,第三张平面与它们平行但不重合 r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合)

7.7 线性表出

在这里插入图片描述

在这里插入图片描述

8 向量空间

在这里插入图片描述
在这里插入图片描述

8.1 向量空间中的坐标

在这里插入图片描述

题型1:要求一个非零向量 b \mathbf{b} b,使得它在两个不同基 { a 1 , a 2 , a 3 } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} {a1,a2,a3} { β 1 , β 2 , β 3 } \{\mathbf{β}_1, \mathbf{β}_2, \mathbf{β}_3\} {β1,β2,β3} 下的坐标相同。设 b \mathbf{b} b 在这两个基下的坐标为 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3),即:
b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 b=x1a1+x2a2+x3a3
b = x 1 β 1 + x 2 β 2 + x 3 β 3 \mathbf{b} = x_1\mathbf{β}_1 + x_2\mathbf{β}_2 + x_3\mathbf{β}_3 b=x1β1+x2β2+x3β3
两式相减,得到
x 1 ( a 1 − β 1 ) + x 2 ( a 2 − β 2 ) + x 3 ( a 3 − β 3 ) = 0 x_1(\mathbf{a}_1 - \mathbf{β}_1) + x_2(\mathbf{a}_2 - \mathbf{β}_2) + x_3(\mathbf{a}_3 - \mathbf{β}_3) = 0 x1(a1β1)+x2(a2β2)+x3(a3β3)=0
为了满足上述等式,并且因为 b \mathbf{b} b 是非零向量,所以 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 至少有一个不为零。这表明 a 1 − β 1 \mathbf{a}_1 - \mathbf{β}_1 a1β1 a 2 − β 2 \mathbf{a}_2 - \mathbf{β}_2 a2β2 a 3 − β 3 \mathbf{a}_3 - \mathbf{β}_3 a3β3 必须是线性相关的。
解齐次方程组
( a 1 − β 1 a 2 − β 2 a 3 − β 3 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix} \mathbf{a}_1 - \mathbf{β}_1 & \mathbf{a}_2 - \mathbf{β}_2 & \mathbf{a}_3 - \mathbf{β}_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} (a1β1a2β2a3β3) x1x2x3 = 000

得解坐标 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3,从而得到向量 b \mathbf{b} b
b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 b=x1a1+x2a2+x3a3

8.2 过渡矩阵

在这里插入图片描述

在这里插入图片描述

8.3 坐标变换

在这里插入图片描述

在这里插入图片描述

9 特征值特征向量

注意:方程组可以有零解,但特征向量决不能是零向量! 注意:方程组可以有零解,但特征向量决不能是零向量! 注意:方程组可以有零解,但特征向量决不能是零向量!
A ∗ 、 A k ( k ≠ − 1 ) 的特征向量不一定是 A 的特征向量 \boldsymbol{A^*}、\boldsymbol{A^k}(k≠-1)的特征向量不一定是\boldsymbol{A}的特征向量 AAk(k=1)的特征向量不一定是A的特征向量
A − 1 、 k A ( k ≠ 0 ) 的特征向量一定是 A 的特征向量 \boldsymbol{A^{-1}}、\boldsymbol{kA}(k≠0)的特征向量一定是\boldsymbol{A}的特征向量 A1kA(k=0)的特征向量一定是A的特征向量

矩阵特征值对应特征向量
A \boldsymbol{A} A λ \boldsymbol{λ} λ α \boldsymbol{α} α
A T \boldsymbol{A^T} AT λ \boldsymbol{λ} λ 重新计算 \boldsymbol{重新计算} 重新计算
将 A 对称化得到 B = A + A T 2 \boldsymbol{将A对称化得到B=\frac{A+A^T}{2}} A对称化得到B=2A+AT 重新计算 \boldsymbol{重新计算} 重新计算 重新计算 \boldsymbol{重新计算} 重新计算
k A \boldsymbol{kA} kA k λ \boldsymbol{kλ} α \boldsymbol{α} α
A k \boldsymbol{A^k} Ak λ k \boldsymbol{λ^k} λk α \boldsymbol{α} α
f ( A ) \boldsymbol{f(A)} f(A) f ( λ ) \boldsymbol{f(λ)} f(λ) α \boldsymbol{α} α
A − 1 \boldsymbol{A^{-1}} A1 1 λ \boldsymbol{\frac{1}{λ}} λ1 α \boldsymbol{α} α
A ∗ \boldsymbol{A^*} A ∣ A ∣ λ \boldsymbol{\frac{|A|}{λ}} λA α \boldsymbol{α} α
P − 1 A P = B \boldsymbol{P^{-1}AP=B} P1AP=B λ \boldsymbol{λ} λ P − 1 α \boldsymbol{P^{-1}α} P1α
P − 1 f ( A ) P = f ( B ) \boldsymbol{P^{-1}f(A)P=f(B)} P1f(A)P=f(B) f ( λ ) \boldsymbol{f(λ)} f(λ) P − 1 α \boldsymbol{P^{-1}α} P1α

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

9.1 施密特正交化

在这里插入图片描述
在这里插入图片描述

9.2 用特征值和特征向量求A

在这里插入图片描述
在这里插入图片描述

10 相似

10.1 相似的五个性质

在这里插入图片描述

10.2 相似的结论

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

10.3 相似对角化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

11 实对称矩阵(必能相似对角化)

在这里插入图片描述
如果矩阵 A A A 不是实对称矩阵,则不同特征值对应的特征向量不一定相互正交。

在这里插入图片描述

12 正交矩阵

在这里插入图片描述
在这里插入图片描述

13 二次型

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

13.1 惯性定理

在这里插入图片描述
在这里插入图片描述

13.2 配方法

在这里插入图片描述

13.3 正交变换法

13.3.1 常规计算

在这里插入图片描述
在这里插入图片描述

13.3.2 反求参数,A或(f)

13.3.3 最值问题

在这里插入图片描述
在这里插入图片描述

13.3.4 几何应用

二次曲面 f = x T A x = 1 f=x^TAx=1 f=xTAx=1的类型

λ 1 , λ 2 , , λ 3 的符号 λ_1,λ_2,,λ_3的符号 λ1,λ2,,λ3的符号 f ( x 1 , x 2 , x 3 ) = 1 f(x_1,x_2,x_3)=1 f(x1,x2,x3)=1
3正椭球面
2正1负单页双曲面
1正2负双叶双曲面 f = 0 时为锥面 f=0时为锥面 f=0时为锥面
2正1零椭圆柱面
1正1负1零双曲柱面

在这里插入图片描述

14 合同

对于任意的 n × n n \times n n×n 矩阵 A A A B B B,如果存在一个可逆矩阵 C C C 使得:

C T A C = B C^TAC = B CTAC=B

则称矩阵 A A A B B B合同矩阵,并且这个变换叫做合同变换。

变换特点

  1. 行列同步:合同变换中的行变换和列变换可同步进行。

  2. 不改变矩阵的秩:合同变换保持矩阵的秩。

  3. 二次型化简:合同变换常用于二次型的化简,使得原矩阵的结构得到简化,同时保持二次型的性质。

在这里插入图片描述

14.1 实对称矩阵的合同

两个实对称矩阵 A A A B B B 如果是合同的,即存在一个可逆矩阵 C C C 使得 C T A C = B C^TAC = B CTAC=B,那么它们的惯性指数(正惯性指数、负惯性指数和零惯性指数的个数)必须相同

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

15 正定二次型(正定矩阵)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

正定矩阵

  • 定义:正定矩阵是一个对称矩阵,并且对于任意非零向量 x \mathbf{x} x,有 x T A x > 0 \mathbf{x}^T A \mathbf{x} > 0 xTAx>0
  • 性质:正定矩阵的特征值都是正数,通常用于优化问题,表示能量最小化等场景。能量最小化通常与目标函数的最小化相关联。比如在机器学习中的损失函数或在经济学中的成本函数,这些函数的最小值往往代表最佳解。正定矩阵在这种场景中非常重要,因为它对应的二次型函数如果是正定的,那么优化问题的目标函数就有一个唯一的最小值。这个最小值就是能量最小化的解。

二次型矩阵

  • 定义:二次型矩阵是描述二次型函数的对称矩阵,形式为 f = x T A x f= \mathbf{x}^T A \mathbf{x} f=xTAx,其中 A A A 是对称矩阵。
  • 性质:二次型矩阵可以是正定的、半正定的、负定的或不定的,具体取决于函数 f f f 的符号情况。

两者的区别

  • 范围不同:正定矩阵是特定类型的二次型矩阵,即二次型矩阵中的一种特殊情况。
  • 判别标准:正定矩阵要求对于所有非零向量 x \mathbf{x} x x T A x \mathbf{x}^T A \mathbf{x} xTAx 必须大于零;而二次型矩阵可以根据其对应二次型的符号不同,具有不同的性质。

16 反对称矩阵

在这里插入图片描述

反对称矩阵(也称为斜对称矩阵)是一类特殊的矩阵,其定义是矩阵的转置等于其负矩阵,即对于矩阵 ( A ) 来说,反对称条件为:

A T = − A A^T = -A AT=A

具体来说,矩阵中的元素满足:
a i j = − a j i a_{ij} = -a_{ji} aij=aji
这意味着矩阵的对角线元素必须为零(即 a i i = 0 a_{ii} = 0 aii=0),因为 a i i = − a i i a_{ii} = -a_{ii} aii=aii,这只有在 a i i = 0 a_{ii} = 0 aii=0 时成立。例如:一个 3 × 3 3×3 3×3 的反对称矩阵为:
A = ( 0 a 12 a 13 − a 12 0 a 23 − a 13 − a 23 0 ) A = \begin{pmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{pmatrix} A= 0a12a13a120a23a13a230

反对称矩阵的性质:

  1. 对角线元素为零:反对称矩阵的对角线元素必须为零。
  2. 特征值性质:反对称矩阵的特征值要么是零,要么是纯虚数(对于实数反对称矩阵)。
  3. 奇数维度的行列式为零:如果反对称矩阵的维度是奇数,那么其行列式为零。这是因为反对称矩阵在奇数维度下的非零特征值成对出现,每对特征值互为相反数,导致行列式为零。

相关文章:

《线性代数》学渣笔记

文章目录 1 行列式1.1 克拉默法则1.2 基本性质1.3 余子式 M i j M_{ij} Mij​1.4 代数余子式 A i j ( − 1 ) i j ⋅ M i j A_{ij} (-1)^{ij} \cdot M_{ij} Aij​(−1)ij⋅Mij​1.5 具体型行列式计算&#xff08;化为基本型&#xff09;1.5.1 主对角线行列式&#xff1a;主…...

对网页聊天项目进行性能测试, 使用JMeter对于基于WebSocket开发的webChat项目的聊天功能进行测试

登录功能 包括接口的设置和csv文件配置 ​​​​​​ 这里csv文件就是使用xlsx保存数据, 然后在浏览器找个网址转成csv文件 注册功能 这里因为需要每次注册的账号不能相同, 所以用了时间函数来当用户名, 保证尽可能的给正确的注册数据, 时间函数使用方法如下 这里输入分钟, 秒…...

《程序猿之设计模式实战 · 适配器模式》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

Elasticsearch案例

目录 一、创建索引 二、准备数据 三、环境搭建 &#xff08;1&#xff09;环境搭建 &#xff08;2&#xff09;创建实体类 &#xff08;3&#xff09;实现Repository接口 四、实现自动补全功能 五、实现高亮搜索关键字功能 &#xff08;1&#xff09;在repository接口中…...

SpringBoot 项目如何使用 pageHelper 做分页处理 (含两种依赖方式)

分页是常见大型项目都需要的一个功能&#xff0c;PageHelper是一个非常流行的MyBatis分页插件&#xff0c;它支持多数据库分页&#xff0c;无需修改SQL语句即可实现分页功能。 本文在最后展示了两种依赖验证的结果。 文章目录 一、第一种依赖方式二、第二种依赖方式三、创建数…...

GSR关键词排名系统是针对谷歌seo的吗?

是的&#xff0c;GSR关键词排名系统专门针对谷歌SEO&#xff0c;具体通过外部优化手段快速提升关键词排名。不同于传统的SEO策略&#xff0c;GSR系统并不依赖于对网站内容的调整或内部优化&#xff0c;完全通过站外操作实现效果。这意味着&#xff0c;用户不需要花费精力在网站…...

HarmonyOS Next开发----使用XComponent自定义绘制

XComponent组件作为一种绘制组件&#xff0c;通常用于满足用户复杂的自定义绘制需求&#xff0c;其主要有两种类型"surface和component。对于surface类型可以将相关数据传入XComponent单独拥有的NativeWindow来渲染画面。 由于上层UI是采用arkTS开发&#xff0c;那么想要…...

什么是电商云手机?可以用来干什么?

随着电商行业的迅速发展&#xff0c;云手机作为一种创新工具正逐渐进入出海电商领域。专为外贸市场量身定制的出海电商云手机&#xff0c;已经成为许多外贸企业和出海电商卖家的必备。本文将详细介绍电商云手机是什么以及可以用来做什么。 与国内云手机偏向于游戏场景不同&…...

Python 2 和 Python 3的差异

Python 2 和 Python 3 之间有许多差异&#xff0c;Python 3 是 Python 语言的更新版本&#xff0c;目的是解决 Python 2 中的一些设计缺陷&#xff0c;并引入更现代的编程方式。以下是 Python 2 和 Python 3 之间的一些主要区别&#xff1a; 文章目录 1. print 语句2. 整除行为…...

Leetcode 第 139 场双周赛题解

Leetcode 第 139 场双周赛题解 Leetcode 第 139 场双周赛题解题目1&#xff1a;3285. 找到稳定山的下标思路代码复杂度分析 题目2&#xff1a;3286. 穿越网格图的安全路径思路代码复杂度分析 题目3&#xff1a;3287. 求出数组中最大序列值思路代码复杂度分析 题目4&#xff1a;…...

spring 注解 - @NotEmpty - 确保被注解的字段不为空,而且也不是空白(即不是空字符串、不是只包含空格的字符串)

NotEmpty 是 Bean Validation API 提供的注解之一&#xff0c;用于确保被注解的字段不为空。它检查字符串不仅不是 null&#xff0c;而且也不是空白&#xff08;即不是空字符串、不是只包含空格的字符串&#xff09;。 这个注解通常用在 Java 应用程序中&#xff0c;特别是在处…...

深入理解华为仓颉语言的数值类型

解锁Python编程的无限可能&#xff1a;《奇妙的Python》带你漫游代码世界 在编程过程中&#xff0c;数据处理是开发者必须掌握的基本技能之一。无论是开发应用程序还是进行算法设计&#xff0c;了解不同数据类型的特性和用途都至关重要。本文将深入探讨华为仓颉语言中的基本数…...

WPF 的TreeView的TreeViewItem下动态生成TreeViewItem

树形结构仅部分需要动态生成TreeViewItem的可以参考本文。 xaml页面 <TreeView MinWidth"220" ><TreeViewItem Header"功能列表" ItemsSource"{Binding Functions}"><TreeViewItem.ItemTemplate><HierarchicalDataTempla…...

使用Go语言的互斥锁(Mutex)解决并发问题

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在并发编程中,由于存在竞争条件和数据竞争,我们需要将某些代码片段设定为临界区,并使用互斥锁(Mutex)等同步原语来保护这些临界区。本文将详细介绍Go语言标准库中Mutex的使用方法,以及如何利用它来解决实际…...

Android平台Unity3D下如何同时播放多路RTMP|RTSP流?

技术背景 好多开发者&#xff0c;提到希望在Unity的Android头显终端&#xff0c;播放2路以上RTMP或RTSP流&#xff0c;在设备性能一般的情况下&#xff0c;对Unity下的RTMP|RTSP播放器提出了更高的要求。实际上&#xff0c;我们在前几年发布Unity下直播播放模块的时候&#xf…...

网络:TCP协议-报头字段

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《Linux》《网络》 文章目录 前言一、TCP协议格式16位源端口号 和 16位目的端口号4位首部长度16位窗口大小32位序号 和 32位确认序号6种标记位 和 16位紧急指针 总结 前言 本文是我对于TCP协…...

JAVA基础:HashMap底层数组容量控制,TreeMap底层存取机制,位运算符,原码反码补码

List常用实现类 List集合常用的实现类有3个 &#xff0c; ArrayList , LinkedList , Vector ArrayList 类似于我们之前的ArrayBox 底层使用数组存储元素&#xff0c; 插入删除的效率低&#xff0c;检索的效率高 当底层数组存储容量不足时&#xff0c;会进行扩容&#xff0c;…...

【Redis】Redis 缓存设计:抗住百万并发量的最佳实践

目录 1. Redis 缓存设计原则1.1 高可用性1.2 数据一致性1.3 读写分离 2. 缓存策略2.1 常用缓存策略2.1.1 缓存穿透2.1.2 缓存雪崩2.1.3 缓存击穿 2.2 额外缓存策略2.2.1 更新策略2.2.2 预热策略2.2.3 侧写缓存 3. Redis 架构设计3.1 单机 vs 集群3.2 Redis 集群示例架构 4. 性能…...

【hot100-java】【缺失的第一个正数】

R9-普通数组篇 class Solution {public int firstMissingPositive(int[] nums) {int nnums.length;for (int i0;i<n;i){while(nums[i]>0&&nums[i]<n&&nums[nums[i]-1]!nums[i]){//交换nums[i]和nums[nums[i]-1]int temp nums[nums[i]-1];nums[nums[i]…...

独立站新手教程转化篇:如何做好移动端优化?

随着移动设备在全球范围内的普及&#xff0c;越来越多消费者选择通过手机或平板电脑&#xff0c;来进行线上购物。因此移动端优化&#xff0c;因此移动端优化&#xff0c;也成为独立站卖家必须重视的一个关键环节。那么独立站移动端需要做好哪些优化工作呢&#xff1f; 选择响…...

Mybatis Plus分页查询返回total为0问题

Mybatis Plus分页查询返回total为0问题 一日&#xff0c;乌云密布&#xff0c;本人看着mybatis plus的官方文档&#xff0c;随手写了个分页查询&#xff0c;如下 Page<Question> questionPage questionService.page(new Page<>(current, size),questionService.g…...

VulnHub-Narak靶机笔记

Narak靶机笔记 概述 Narak是一台Vulnhub的靶机&#xff0c;其中有简单的tftp和webdav的利用&#xff0c;以及motd文件的一些知识 靶机地址&#xff1a; https://pan.baidu.com/s/1PbPrGJQHxsvGYrAN1k1New?pwda7kv 提取码: a7kv 当然你也可以去Vulnhub官网下载 一、nmap扫…...

查看和升级pytorch到指定版本

文章目录 查看和升级pytorch到指定版本查看pytorch的版本python 命令查看pytorch的版本使用pip 命令查看当前安装的PyTorch版本升级PyTorch到指定版本 升级到特定的版本 查看和升级pytorch到指定版本 查看pytorch的版本 python 命令查看pytorch的版本 通过Python的包管理工具…...

Maya---机械模型制作

材质效果&#xff08;4&#xff09;_哔哩哔哩_bilibili 三角面 四边面 多边面 *游戏允许出现三角面和四边面 游戏中一般是低模&#xff08;几千个面&#xff09; 动漫及影视是高模 机械由单独零件组合而成&#xff0c;需独立制作 低面模型到高面模型 卡线是为了将模型保…...

请不要在TS中使用Function类型

在 TypeScript 中&#xff0c;避免使用 Function 作为类型。Function 代表的是“任意类型的函数”&#xff0c;这会带来类型安全问题。对于绝大多数情况&#xff0c;你可能更希望明确地指定函数的参数和返回值类型。 如果你确实想表达一个可以接收任意数量参数并返回任意类型的…...

关于UVM仿真error数量达到指定值就退出仿真的设置

1. 问题描述 在某项目调试过程中&#xff0c;发现通过tc_base.sv中new函数里的set_report_max_quit_count()设置最大error数量不生效&#xff0c;uvm_error数量仍旧是达到10个&#xff08;默认&#xff09;就会退出仿真。 2. 设置uvm_error到达一定数量结束仿真的方式 由白皮…...

chatGPT问答知识合集【二】

Redis 架构说明 Redis 是一个开源的内存数据库&#xff0c;它也可以持久化到磁盘。以下是 Redis 的典型架构说明&#xff1a;### Redis 架构组件&#xff1a;1. **客户端**&#xff1a;与 Redis 服务器进行通信的应用程序或客户端库。2. **Redis 服务器**&#xff1a;执行实际…...

不靠学历,不拼年资,怎么才能月入2W?

之前统计局发布了《2023年城镇单位就业人员年平均工资情况》&#xff0c;2023年全国城镇非私营单位和私营单位就业人员年平均工资分别为120698元和68340元。也就是说在去年非私营单位就业人员平均月薪1W&#xff0c;而私营单位就业人员平均月薪只有5.7K左右。 图源&#xff1a;…...

【软考】多核CPU

目录 1. 说明 1. 说明 1.核心又称为内核&#xff0c;是 CPU 最重要的组成部分。2.CPU 中心那块隆起的芯片就是核心&#xff0c;是由单品硅以一定的生产工艺制造出来的&#xff0c;CPU 所有的计算、接收/存储命令、处理数据都由核心执行。3.各种 CPU 核心都具有固定的逻辑结构&…...

制作炫酷个人网页:用 HTML 和 CSS3 展现你的风格

你是否觉得自己的网站应该看起来更炫酷&#xff1f;今天我将教你如何使用 HTML 和 CSS3 制作一个拥有炫酷动画和现代设计风格的个人网页&#xff0c;让它在任何设备上看起来都无敌酷炫&#xff01; 哈哈哈哈哈哈哈哈,我感觉自己有点中二哈哈哈哈~ 目录 炫酷设计理念构建 HTML …...