3D Slicer医学图像全自动AI分割组合拳-MONAIAuto3DSeg扩展
3D Slicer医学图像全自动AI分割组合拳-MONAIAuto3DSeg扩展
1 官网下载最新3D Slicer image computing platform | 3D Slicer 版本5.7
2 安装torch依赖包:
2.1 进入安装目录C:\Users\wangzhenlin\AppData\Local\slicer.org\Slicer 5.7.0-2024-09-21\bin,安装下载好的whl文件,slicer对应的是python3.9版本。
2.2 参考python playsound插件下载 python插件库_kcoufee的技术博客_51CTO博客
在自己conda环境下安装好,之后copy到slicer的文件夹内 :
slicer的 Lib/site-packages路径:C:\Users\wangzhenlin\AppData\Local\slicer.org\Slicer 5.7.0-2024-09-21\lib\Python\Lib\site-packages
conda的 Lib/site-packages路径:D:\ProgramData\Anaconda3\envs\slicer39\Lib\site-packages
3 最后slicer自动安装对应的包
4模型下载地址:C:\Users\wangzhenlin\.MONAIAuto3DSeg\models\abdominal-organs-3mm-v2.0.0
log记录:
>>>
Collecting monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3Obtaining dependency information for monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3 from https://files.pythonhosted.org/packages/bc/74/42d4ab8ee0a32c23ac7d38912c0d9d7c30de6e36b601e68bd2538452309b/monai-1.3.2-py3-none-any.whl.metadataDownloading monai-1.3.2-py3-none-any.whl.metadata (10 kB)
Requirement already satisfied: torch>=1.9 in c:\users\wangzhenlin\appdata\local\slicer.org\slicer 5.7.0-2024-09-21\lib\python\lib\site-packages (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3) (2.2.2+cu118)
Requirement already satisfied: numpy>=1.20 in c:\users\wangzhenlin\appdata\local\slicer.org\slicer 5.7.0-2024-09-21\lib\python\lib\site-packages (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3) (1.26.4)
Collecting tqdm>=4.47.0 (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for tqdm>=4.47.0 from https://files.pythonhosted.org/packages/48/5d/acf5905c36149bbaec41ccf7f2b68814647347b72075ac0b1fe3022fdc73/tqdm-4.66.5-py3-none-any.whl.metadataDownloading tqdm-4.66.5-py3-none-any.whl.metadata (57 kB)-------------------------------------- 57.6/57.6 kB 275.4 kB/s eta 0:00:00
Collecting pyyaml (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for pyyaml from https://files.pythonhosted.org/packages/19/87/5124b1c1f2412bb95c59ec481eaf936cd32f0fe2a7b16b97b81c4c017a6a/PyYAML-6.0.2-cp39-cp39-win_amd64.whl.metadataDownloading PyYAML-6.0.2-cp39-cp39-win_amd64.whl.metadata (2.1 kB)
Collecting nibabel (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for nibabel from https://files.pythonhosted.org/packages/77/3f/ce43b8c2ccc4a7913a87c4d425aaf0080ea3abf947587e47dc2025981a17/nibabel-5.2.1-py3-none-any.whl.metadataDownloading nibabel-5.2.1-py3-none-any.whl.metadata (8.8 kB)
Collecting itk>=5.2 (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for itk>=5.2 from https://files.pythonhosted.org/packages/84/83/f1936822cb496ceb0b83c896e9347c3fbc0d0feb36e7eb1bdf750dfba12c/itk-5.4.0-cp39-cp39-win_amd64.whl.metadataDownloading itk-5.4.0-cp39-cp39-win_amd64.whl.metadata (22 kB)
Collecting fire (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Downloading fire-0.6.0.tar.gz (88 kB)---------------------------------------- 88.4/88.4 kB 1.2 MB/s eta 0:00:00Installing build dependencies: startedInstalling build dependencies: finished with status 'done'Getting requirements to build wheel: startedGetting requirements to build wheel: finished with status 'done'Preparing metadata (pyproject.toml): startedPreparing metadata (pyproject.toml): finished with status 'done'
Collecting tensorboard (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for tensorboard from https://files.pythonhosted.org/packages/d4/41/dccba8c5f955bc35b6110ff78574e4e5c8226ad62f08e732096c3861309b/tensorboard-2.17.1-py3-none-any.whl.metadataDownloading tensorboard-2.17.1-py3-none-any.whl.metadata (1.6 kB)
Collecting scikit-image>=0.14.2 (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for scikit-image>=0.14.2 from https://files.pythonhosted.org/packages/9d/63/233300aa76c65a442a301f9d2416a9b06c91631287bd6dd3d6b620040096/scikit_image-0.24.0-cp39-cp39-win_amd64.whl.metadataDownloading scikit_image-0.24.0-cp39-cp39-win_amd64.whl.metadata (14 kB)
Collecting psutil (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for psutil from https://files.pythonhosted.org/packages/73/44/561092313ae925f3acfaace6f9ddc4f6a9c748704317bad9c8c8f8a36a79/psutil-6.0.0-cp37-abi3-win_amd64.whl.metadataDownloading psutil-6.0.0-cp37-abi3-win_amd64.whl.metadata (22 kB)
Collecting pynrrd (from monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for pynrrd from https://files.pythonhosted.org/packages/ee/43/1be50fe04e6a5df8cfdafa62151035a9358a768e26a5b9f33fc417e10bc6/pynrrd-1.0.0-py2.py3-none-any.whl.metadataDownloading pynrrd-1.0.0-py2.py3-none-any.whl.metadata (3.9 kB)
Collecting itk-core==5.4.0 (from itk>=5.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for itk-core==5.4.0 from https://files.pythonhosted.org/packages/6a/c0/dcba14bf17ac6a88475676fbfb6faa759616b61e7e7a071035336d4008ce/itk_core-5.4.0-cp39-cp39-win_amd64.whl.metadataDownloading itk_core-5.4.0-cp39-cp39-win_amd64.whl.metadata (22 kB)
Collecting itk-numerics==5.4.0 (from itk>=5.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for itk-numerics==5.4.0 from https://files.pythonhosted.org/packages/b0/14/0f14f4202418c47a76f47b1d3bbcbd191896261688a5d1e7f1fa08a74a47/itk_numerics-5.4.0-cp39-cp39-win_amd64.whl.metadataDownloading itk_numerics-5.4.0-cp39-cp39-win_amd64.whl.metadata (22 kB)
Collecting itk-io==5.4.0 (from itk>=5.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for itk-io==5.4.0 from https://files.pythonhosted.org/packages/14/53/5cbcd48a40309bbe0407e35ad90922ec94615129e3fabfb65b729b77d896/itk_io-5.4.0-cp39-cp39-win_amd64.whl.metadataDownloading itk_io-5.4.0-cp39-cp39-win_amd64.whl.metadata (22 kB)
Collecting itk-filtering==5.4.0 (from itk>=5.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for itk-filtering==5.4.0 from https://files.pythonhosted.org/packages/64/45/e603fc2f638e6b9988159c5feb148202062113fcb5eb8b37dfc0f805f463/itk_filtering-5.4.0-cp39-cp39-win_amd64.whl.metadataDownloading itk_filtering-5.4.0-cp39-cp39-win_amd64.whl.metadata (22 kB)
Collecting itk-registration==5.4.0 (from itk>=5.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for itk-registration==5.4.0 from https://files.pythonhosted.org/packages/89/38/38d5a441cf468c8625d5611100c2c2f8e0a0a8c41f5782f543d58774ad8d/itk_registration-5.4.0-cp39-cp39-win_amd64.whl.metadataDownloading itk_registration-5.4.0-cp39-cp39-win_amd64.whl.metadata (22 kB)
Collecting itk-segmentation==5.4.0 (from itk>=5.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for itk-segmentation==5.4.0 from https://files.pythonhosted.org/packages/43/40/eee28dc7b383be22b6bffb48c0e6dadb126bdf38b6310a9ca4d4acd3d4ab/itk_segmentation-5.4.0-cp39-cp39-win_amd64.whl.metadataDownloading itk_segmentation-5.4.0-cp39-cp39-win_amd64.whl.metadata (22 kB)
Requirement already satisfied: scipy>=1.9 in c:\users\wangzhenlin\appdata\local\slicer.org\slicer 5.7.0-2024-09-21\lib\python\lib\site-packages (from scikit-image>=0.14.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3) (1.13.1)
Collecting networkx>=2.8 (from scikit-image>=0.14.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for networkx>=2.8 from https://files.pythonhosted.org/packages/d5/f0/8fbc882ca80cf077f1b246c0e3c3465f7f415439bdea6b899f6b19f61f70/networkx-3.2.1-py3-none-any.whl.metadataUsing cached networkx-3.2.1-py3-none-any.whl.metadata (5.2 kB)
Requirement already satisfied: pillow>=9.1 in c:\users\wangzhenlin\appdata\local\slicer.org\slicer 5.7.0-2024-09-21\lib\python\lib\site-packages (from scikit-image>=0.14.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3) (10.3.0)
Collecting imageio>=2.33 (from scikit-image>=0.14.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for imageio>=2.33 from https://files.pythonhosted.org/packages/1e/b7/02adac4e42a691008b5cfb31db98c190e1fc348d1521b9be4429f9454ed1/imageio-2.35.1-py3-none-any.whl.metadataDownloading imageio-2.35.1-py3-none-any.whl.metadata (4.9 kB)
Collecting tifffile>=2022.8.12 (from scikit-image>=0.14.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for tifffile>=2022.8.12 from https://files.pythonhosted.org/packages/3a/4f/73714b1c1d339b1545cac28764e39f88c69468b5e10e51f327f9aa9d55b9/tifffile-2024.8.30-py3-none-any.whl.metadataDownloading tifffile-2024.8.30-py3-none-any.whl.metadata (31 kB)
Requirement already satisfied: packaging>=21 in c:\users\wangzhenlin\appdata\local\slicer.org\slicer 5.7.0-2024-09-21\lib\python\lib\site-packages (from scikit-image>=0.14.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3) (24.0)
Collecting lazy-loader>=0.4 (from scikit-image>=0.14.2->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for lazy-loader>=0.4 from https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl.metadataDownloading lazy_loader-0.4-py3-none-any.whl.metadata (7.6 kB)
Collecting filelock (from torch>=1.9->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for filelock from https://files.pythonhosted.org/packages/b9/f8/feced7779d755758a52d1f6635d990b8d98dc0a29fa568bbe0625f18fdf3/filelock-3.16.1-py3-none-any.whl.metadataUsing cached filelock-3.16.1-py3-none-any.whl.metadata (2.9 kB)
Requirement already satisfied: typing-extensions>=4.8.0 in c:\users\wangzhenlin\appdata\local\slicer.org\slicer 5.7.0-2024-09-21\lib\python\lib\site-packages (from torch>=1.9->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3) (4.12.1)
Collecting sympy (from torch>=1.9->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for sympy from https://files.pythonhosted.org/packages/99/ff/c87e0622b1dadea79d2fb0b25ade9ed98954c9033722eb707053d310d4f3/sympy-1.13.3-py3-none-any.whl.metadataUsing cached sympy-1.13.3-py3-none-any.whl.metadata (12 kB)
Collecting jinja2 (from torch>=1.9->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for jinja2 from https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl.metadataUsing cached jinja2-3.1.4-py3-none-any.whl.metadata (2.6 kB)
Collecting fsspec (from torch>=1.9->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for fsspec from https://files.pythonhosted.org/packages/1d/a0/6aaea0c2fbea2f89bfd5db25fb1e3481896a423002ebe4e55288907a97a3/fsspec-2024.9.0-py3-none-any.whl.metadataUsing cached fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)
Collecting colorama (from tqdm>=4.47.0->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for colorama from https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl.metadataDownloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)
Requirement already satisfied: six in c:\users\wangzhenlin\appdata\local\slicer.org\slicer 5.7.0-2024-09-21\lib\python\lib\site-packages (from fire->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3) (1.16.0)
Collecting termcolor (from fire->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for termcolor from https://files.pythonhosted.org/packages/d9/5f/8c716e47b3a50cbd7c146f45881e11d9414def768b7cd9c5e6650ec2a80a/termcolor-2.4.0-py3-none-any.whl.metadataDownloading termcolor-2.4.0-py3-none-any.whl.metadata (6.1 kB)
Collecting nptyping (from pynrrd->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for nptyping from https://files.pythonhosted.org/packages/b1/28/92edc05378175de13a3d4986cee7531853634a22b7e5e21a988fa84fde3f/nptyping-2.5.0-py3-none-any.whl.metadataDownloading nptyping-2.5.0-py3-none-any.whl.metadata (7.6 kB)
Collecting absl-py>=0.4 (from tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for absl-py>=0.4 from https://files.pythonhosted.org/packages/a2/ad/e0d3c824784ff121c03cc031f944bc7e139a8f1870ffd2845cc2dd76f6c4/absl_py-2.1.0-py3-none-any.whl.metadataDownloading absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)
Collecting grpcio>=1.48.2 (from tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for grpcio>=1.48.2 from https://files.pythonhosted.org/packages/28/7c/a280d2f5f7afbb815602bbf030e4ae179506b973b8c88a58d44ceefe1d47/grpcio-1.66.1-cp39-cp39-win_amd64.whl.metadataDownloading grpcio-1.66.1-cp39-cp39-win_amd64.whl.metadata (4.0 kB)
Collecting markdown>=2.6.8 (from tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for markdown>=2.6.8 from https://files.pythonhosted.org/packages/3f/08/83871f3c50fc983b88547c196d11cf8c3340e37c32d2e9d6152abe2c61f7/Markdown-3.7-py3-none-any.whl.metadataDownloading Markdown-3.7-py3-none-any.whl.metadata (7.0 kB)
Collecting protobuf!=4.24.0,>=3.19.6 (from tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for protobuf!=4.24.0,>=3.19.6 from https://files.pythonhosted.org/packages/94/12/af94b0654fa6bde64272b2abab39b221544c32e9e911284745569f65e73a/protobuf-5.28.2-cp39-cp39-win_amd64.whl.metadataDownloading protobuf-5.28.2-cp39-cp39-win_amd64.whl.metadata (592 bytes)
Requirement already satisfied: setuptools>=41.0.0 in c:\users\wangzhenlin\appdata\local\slicer.org\slicer 5.7.0-2024-09-21\lib\python\lib\site-packages (from tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3) (70.0.0)
Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for tensorboard-data-server<0.8.0,>=0.7.0 from https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl.metadataDownloading tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB)
Collecting werkzeug>=1.0.1 (from tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for werkzeug>=1.0.1 from https://files.pythonhosted.org/packages/4b/84/997bbf7c2bf2dc3f09565c6d0b4959fefe5355c18c4096cfd26d83e0785b/werkzeug-3.0.4-py3-none-any.whl.metadataDownloading werkzeug-3.0.4-py3-none-any.whl.metadata (3.7 kB)
Collecting importlib-metadata>=4.4 (from markdown>=2.6.8->tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for importlib-metadata>=4.4 from https://files.pythonhosted.org/packages/a0/d9/a1e041c5e7caa9a05c925f4bdbdfb7f006d1f74996af53467bc394c97be7/importlib_metadata-8.5.0-py3-none-any.whl.metadataDownloading importlib_metadata-8.5.0-py3-none-any.whl.metadata (4.8 kB)
Collecting MarkupSafe>=2.1.1 (from werkzeug>=1.0.1->tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for MarkupSafe>=2.1.1 from https://files.pythonhosted.org/packages/f6/f8/4da07de16f10551ca1f640c92b5f316f9394088b183c6a57183df6de5ae4/MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl.metadataUsing cached MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl.metadata (3.1 kB)
Collecting mpmath<1.4,>=1.1.0 (from sympy->torch>=1.9->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for mpmath<1.4,>=1.1.0 from https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl.metadataUsing cached mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)
Collecting zipp>=3.20 (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->monai[fire,itk,nibabel,psutil,pynrrd,pyyaml,skimage,tensorboard,tqdm]>=1.3)Obtaining dependency information for zipp>=3.20 from https://files.pythonhosted.org/packages/62/8b/5ba542fa83c90e09eac972fc9baca7a88e7e7ca4b221a89251954019308b/zipp-3.20.2-py3-none-any.whl.metadataDownloading zipp-3.20.2-py3-none-any.whl.metadata (3.7 kB)
Downloading itk-5.4.0-cp39-cp39-win_amd64.whl (17 kB)
Downloading itk_core-5.4.0-cp39-cp39-win_amd64.whl (37.1 MB)---------------------------------------- 37.1/37.1 MB 9.1 MB/s eta 0:00:00
Downloading itk_filtering-5.4.0-cp39-cp39-win_amd64.whl (23.8 MB)---------------------------------------- 23.8/23.8 MB 12.6 MB/s eta 0:00:00
Downloading itk_io-5.4.0-cp39-cp39-win_amd64.whl (8.7 MB)---------------------------------------- 8.7/8.7 MB 12.3 MB/s eta 0:00:00
Downloading itk_numerics-5.4.0-cp39-cp39-win_amd64.whl (19.9 MB)---------------------------------------- 19.9/19.9 MB 11.9 MB/s eta 0:00:00
Downloading itk_registration-5.4.0-cp39-cp39-win_amd64.whl (9.5 MB)---------------------------------------- 9.5/9.5 MB 11.6 MB/s eta 0:00:00
Downloading itk_segmentation-5.4.0-cp39-cp39-win_amd64.whl (5.0 MB)---------------------------------------- 5.0/5.0 MB 10.0 MB/s eta 0:00:00
Downloading scikit_image-0.24.0-cp39-cp39-win_amd64.whl (12.9 MB)---------------------------------------- 12.9/12.9 MB 9.6 MB/s eta 0:00:00
Downloading tqdm-4.66.5-py3-none-any.whl (78 kB)---------------------------------------- 78.4/78.4 kB ? eta 0:00:00
Downloading monai-1.3.2-py3-none-any.whl (1.4 MB)---------------------------------------- 1.4/1.4 MB 14.4 MB/s eta 0:00:00
Downloading nibabel-5.2.1-py3-none-any.whl (3.3 MB)---------------------------------------- 3.3/3.3 MB 10.0 MB/s eta 0:00:00
Downloading psutil-6.0.0-cp37-abi3-win_amd64.whl (257 kB)--------------------------------------- 257.4/257.4 kB 15.4 MB/s eta 0:00:00
Downloading pynrrd-1.0.0-py2.py3-none-any.whl (19 kB)
Downloading PyYAML-6.0.2-cp39-cp39-win_amd64.whl (162 kB)--------------------------------------- 162.3/162.3 kB 10.1 MB/s eta 0:00:00
Downloading tensorboard-2.17.1-py3-none-any.whl (5.5 MB)---------------------------------------- 5.5/5.5 MB 12.1 MB/s eta 0:00:00
Downloading absl_py-2.1.0-py3-none-any.whl (133 kB)---------------------------------------- 133.7/133.7 kB 8.2 MB/s eta 0:00:00
Downloading grpcio-1.66.1-cp39-cp39-win_amd64.whl (4.3 MB)---------------------------------------- 4.3/4.3 MB 16.1 MB/s eta 0:00:00
Downloading imageio-2.35.1-py3-none-any.whl (315 kB)--------------------------------------- 315.4/315.4 kB 19.1 MB/s eta 0:00:00
Downloading lazy_loader-0.4-py3-none-any.whl (12 kB)
Downloading Markdown-3.7-py3-none-any.whl (106 kB)---------------------------------------- 106.3/106.3 kB 6.0 MB/s eta 0:00:00
Using cached networkx-3.2.1-py3-none-any.whl (1.6 MB)
Downloading protobuf-5.28.2-cp39-cp39-win_amd64.whl (431 kB)---------------------------------------- 431.6/431.6 kB 6.8 MB/s eta 0:00:00
Downloading tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)
Downloading tifffile-2024.8.30-py3-none-any.whl (227 kB)---------------------------------------- 227.3/227.3 kB 7.0 MB/s eta 0:00:00
Downloading werkzeug-3.0.4-py3-none-any.whl (227 kB)--------------------------------------- 227.6/227.6 kB 13.6 MB/s eta 0:00:00
Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)
Using cached filelock-3.16.1-py3-none-any.whl (16 kB)
Using cached fsspec-2024.9.0-py3-none-any.whl (179 kB)
Using cached jinja2-3.1.4-py3-none-any.whl (133 kB)
Downloading nptyping-2.5.0-py3-none-any.whl (37 kB)
Using cached sympy-1.13.3-py3-none-any.whl (6.2 MB)
Downloading termcolor-2.4.0-py3-none-any.whl (7.7 kB)
Downloading importlib_metadata-8.5.0-py3-none-any.whl (26 kB)
Using cached MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl (17 kB)
Using cached mpmath-1.3.0-py3-none-any.whl (536 kB)
Downloading zipp-3.20.2-py3-none-any.whl (9.2 kB)
Building wheels for collected packages: fireBuilding wheel for fire (pyproject.toml): startedBuilding wheel for fire (pyproject.toml): finished with status 'done'Created wheel for fire: filename=fire-0.6.0-py2.py3-none-any.whl size=117044 sha256=56c65e2b67ee319bb7643cfab4ee2b3313f097656f7ca21125f2c6b87247ce73Stored in directory: c:\users\wangzhenlin\appdata\local\pip\cache\wheels\ec\ce\ba\9d5764d2266c500c18776c7d8f1e3c023075994cbc6dea47db
Successfully built fire
Installing collected packages: mpmath, zipp, tifffile, termcolor, tensorboard-data-server, sympy, pyyaml, psutil, protobuf, nptyping, nibabel, networkx, MarkupSafe, lazy-loader, itk-core, imageio, grpcio, fsspec, filelock, colorama, absl-py, werkzeug, tqdm, scikit-image, pynrrd, jinja2, itk-numerics, itk-io, importlib-metadata, fire, markdown, itk-filtering, tensorboard, monai, itk-segmentation, itk-registration, itk
Successfully installed MarkupSafe-2.1.5 absl-py-2.1.0 colorama-0.4.6 filelock-3.16.1 fire-0.6.0 fsspec-2024.9.0 grpcio-1.66.1 imageio-2.35.1 importlib-metadata-8.5.0 itk-5.4.0 itk-core-5.4.0 itk-filtering-5.4.0 itk-io-5.4.0 itk-numerics-5.4.0 itk-registration-5.4.0 itk-segmentation-5.4.0 jinja2-3.1.4 lazy-loader-0.4 markdown-3.7 monai-1.3.2 mpmath-1.3.0 networkx-3.2.1 nibabel-5.2.1 nptyping-2.5.0 protobuf-5.28.2 psutil-6.0.0 pynrrd-1.0.0 pyyaml-6.0.2 scikit-image-0.24.0 sympy-1.13.3 tensorboard-2.17.1 tensorboard-data-server-0.7.2 termcolor-2.4.0 tifffile-2024.8.30 tqdm-4.66.5 werkzeug-3.0.4 zipp-3.20.2Initializing PyTorch...
Initializing MONAI...
Dependencies are set up successfully.
Downloading model 'abdominal-organs-3mm-v2.0.0' from https://github.com/lassoan/SlicerMONAIAuto3DSeg/releases/download/Models/abdominal-organs-3mm-v2.0.0.zip...
Downloading model: 0.1MB / 308.3MB (0.0%)
Downloading model: 3.2MB / 308.3MB (1.1%)
Downloading model: 6.4MB / 308.3MB (2.1%)
Downloading model: 9.5MB / 308.3MB (3.1%)
Downloading model: 12.6MB / 308.3MB (4.1%)
Downloading model: 15.8MB / 308.3MB (5.1%)
Downloading model: 18.9MB / 308.3MB (6.1%)
Downloading model: 22.0MB / 308.3MB (7.1%)
Downloading model: 25.1MB / 308.3MB (8.2%)
Downloading model: 28.2MB / 308.3MB (9.2%)
Downloading model: 31.4MB / 308.3MB (10.2%)
Downloading model: 34.5MB / 308.3MB (11.2%)
Downloading model: 37.6MB / 308.3MB (12.2%)
Downloading model: 40.8MB / 308.3MB (13.2%)
Downloading model: 43.9MB / 308.3MB (14.2%)
Downloading model: 47.0MB / 308.3MB (15.2%)
Downloading model: 50.1MB / 308.3MB (16.3%)
Downloading model: 53.2MB / 308.3MB (17.3%)
Downloading model: 56.4MB / 308.3MB (18.3%)
Downloading model: 59.5MB / 308.3MB (19.3%)
Downloading model: 62.6MB / 308.3MB (20.3%)
Downloading model: 65.8MB / 308.3MB (21.3%)
Downloading model: 68.9MB / 308.3MB (22.3%)
Downloading model: 72.0MB / 308.3MB (23.4%)
Downloading model: 75.1MB / 308.3MB (24.4%)
Downloading model: 78.2MB / 308.3MB (25.4%)
Downloading model: 81.4MB / 308.3MB (26.4%)
Downloading model: 84.5MB / 308.3MB (27.4%)
Downloading model: 87.6MB / 308.3MB (28.4%)
Downloading model: 90.8MB / 308.3MB (29.4%)
Downloading model: 93.9MB / 308.3MB (30.5%)
Downloading model: 97.0MB / 308.3MB (31.5%)
Downloading model: 100.1MB / 308.3MB (32.5%)
Downloading model: 103.2MB / 308.3MB (33.5%)
Downloading model: 106.4MB / 308.3MB (34.5%)
Downloading model: 109.5MB / 308.3MB (35.5%)
Downloading model: 112.6MB / 308.3MB (36.5%)
Downloading model: 115.8MB / 308.3MB (37.5%)
Downloading model: 118.9MB / 308.3MB (38.6%)
Downloading model: 122.0MB / 308.3MB (39.6%)
Downloading model: 125.1MB / 308.3MB (40.6%)
Downloading model: 128.2MB / 308.3MB (41.6%)
Downloading model: 131.4MB / 308.3MB (42.6%)
Downloading model: 134.5MB / 308.3MB (43.6%)
Downloading model: 137.6MB / 308.3MB (44.6%)
Downloading model: 140.8MB / 308.3MB (45.7%)
Downloading model: 143.9MB / 308.3MB (46.7%)
Downloading model: 147.0MB / 308.3MB (47.7%)
Downloading model: 150.1MB / 308.3MB (48.7%)
Downloading model: 153.2MB / 308.3MB (49.7%)
Downloading model: 156.4MB / 308.3MB (50.7%)
Downloading model: 159.5MB / 308.3MB (51.7%)
Downloading model: 162.6MB / 308.3MB (52.8%)
Downloading model: 165.8MB / 308.3MB (53.8%)
Downloading model: 168.9MB / 308.3MB (54.8%)
Downloading model: 172.0MB / 308.3MB (55.8%)
Downloading model: 175.1MB / 308.3MB (56.8%)
Downloading model: 178.2MB / 308.3MB (57.8%)
Downloading model: 181.4MB / 308.3MB (58.8%)
Downloading model: 184.5MB / 308.3MB (59.8%)
Downloading model: 187.6MB / 308.3MB (60.9%)
Downloading model: 190.8MB / 308.3MB (61.9%)
Downloading model: 193.9MB / 308.3MB (62.9%)
Downloading model: 197.0MB / 308.3MB (63.9%)
Downloading model: 200.1MB / 308.3MB (64.9%)
Downloading model: 203.2MB / 308.3MB (65.9%)
Downloading model: 206.4MB / 308.3MB (66.9%)
Downloading model: 209.5MB / 308.3MB (68.0%)
Downloading model: 212.6MB / 308.3MB (69.0%)
Downloading model: 215.8MB / 308.3MB (70.0%)
Downloading model: 218.9MB / 308.3MB (71.0%)
Downloading model: 222.0MB / 308.3MB (72.0%)
Downloading model: 225.1MB / 308.3MB (73.0%)
Downloading model: 228.2MB / 308.3MB (74.0%)
Downloading model: 231.4MB / 308.3MB (75.1%)
Downloading model: 234.5MB / 308.3MB (76.1%)
Downloading model: 237.6MB / 308.3MB (77.1%)
Downloading model: 240.8MB / 308.3MB (78.1%)
Downloading model: 243.9MB / 308.3MB (79.1%)
Downloading model: 247.0MB / 308.3MB (80.1%)
Downloading model: 250.1MB / 308.3MB (81.1%)
Downloading model: 253.2MB / 308.3MB (82.2%)
Downloading model: 256.4MB / 308.3MB (83.2%)
Downloading model: 259.5MB / 308.3MB (84.2%)
Downloading model: 262.6MB / 308.3MB (85.2%)
Downloading model: 265.8MB / 308.3MB (86.2%)
Downloading model: 268.9MB / 308.3MB (87.2%)
Downloading model: 272.0MB / 308.3MB (88.2%)
Downloading model: 275.1MB / 308.3MB (89.2%)
Downloading model: 278.2MB / 308.3MB (90.3%)
Downloading model: 281.4MB / 308.3MB (91.3%)
Downloading model: 284.5MB / 308.3MB (92.3%)
Downloading model: 287.6MB / 308.3MB (93.3%)
Downloading model: 290.8MB / 308.3MB (94.3%)
Downloading model: 293.9MB / 308.3MB (95.3%)
Downloading model: 297.0MB / 308.3MB (96.3%)
Downloading model: 300.1MB / 308.3MB (97.4%)
Downloading model: 303.2MB / 308.3MB (98.4%)
Downloading model: 306.4MB / 308.3MB (99.4%)
Download finished. Extracting to C:\Users\wangzhenlin\.MONAIAuto3DSeg\models\abdominal-organs-3mm-v2.0.0...
Cleaning up temporary model download folder...
Processing started
Writing input file to C:/Users/wangzhenlin/AppData/Local/Temp/Slicer/__SlicerTemp__2024-09-24_17+56+23.048/input-volume0.nrrd
Creating segmentations with MONAIAuto3DSeg AI...
Auto3DSeg command: ['C:/Users/wangzhenlin/AppData/Local/slicer.org/Slicer 5.7.0-2024-09-21/bin/../bin\\PythonSlicer.EXE', 'C:/Users/wangzhenlin/AppData/Local/slicer.org/Slicer 5.7.0-2024-09-21/slicer.org/Extensions-33025/MONAIAuto3DSeg/lib/Slicer-5.7/qt-scripted-modules\\Scripts\\auto3dseg_segresnet_inference.py', '--model-file', 'C:\\Users\\wangzhenlin\\.MONAIAuto3DSeg\\models\\abdominal-organs-3mm-v2.0.0\\model.pt', '--image-file', 'C:/Users/wangzhenlin/AppData/Local/Temp/Slicer/__SlicerTemp__2024-09-24_17+56+23.048/input-volume0.nrrd', '--result-file', 'C:/Users/wangzhenlin/AppData/Local/Temp/Slicer/__SlicerTemp__2024-09-24_17+56+23.048/output-segmentation.nrrd']
`apex.normalization.InstanceNorm3dNVFuser` is not installed properly, use nn.InstanceNorm3d instead.
Model epoch 294 metric 0.9070999026298523
Using crop_foreground
Using resample with resample_resolution [3.0, 3.0, 3.0]
Running Inference ...preds inverted torch.Size([512, 512, 88])
Computation time log:Loading volumes: 2.19 seconds
Importing segmentation results...
Cleaning up temporary folder.
Processing was completed in 22.38 seconds.Processing finished.
相关文章:

3D Slicer医学图像全自动AI分割组合拳-MONAIAuto3DSeg扩展
3D Slicer医学图像全自动AI分割组合拳-MONAIAuto3DSeg扩展 1 官网下载最新3D Slicer image computing platform | 3D Slicer 版本5.7 2 安装torch依赖包: 2.1 进入安装目录C:\Users\wangzhenlin\AppData\Local\slicer.org\Slicer 5.7.0-2024-09-21\bin࿰…...

分布式光伏的发电监控
国拥有丰富的清洁可再生能源资源储量,积极开发利用可再生能源,为解决当前化石能源短缺与环境污染严重的燃眉之急提供了有效途径[1]。但是可再生能源的利用和开发,可再生能源技术的发展和推广以及可再生能源资源对环境保护的正向影响ÿ…...

微信小程序----日期时间选择器(自定义时间精确到分秒)
目录 页面效果 代码实现 注意事项 页面效果 代码实现 js Component({/*** 组件的属性列表*/properties: {pickerShow: {type: Boolean,},config: Object,},/*** 组件的初始数据*/data: {pickerReady: false,// pickerShow:true// limitStartTime: new Date().getTime()-…...

3D生成技术再创新高:VAST发布Tripo 2.0,提升AI 3D生成新高度
随着《黑神话悟空》的爆火,3D游戏背后的AI 3D生成技术也逐渐受到更多的关注。虽然3D大模型的热度相较于语言模型和视频生成技术稍逊一筹,但全球的3D大模型玩家们却从未放慢脚步。无论是a16z支持的Yellow,还是李飞飞创立的World Labsÿ…...
ONNX Runtime学习之InferenceSession模块
ONNXRuntime库学习之InferenceSession(模块) 一、简介 onnxruntime.InferenceSession 是 ONNX Runtime 中用于加载和运行 ONNX 模型的核心模块。它提供了一种灵活的方式来在多种硬件设备(如 CPU、GPU)上执行 ONNX 模型推理。通过 InferenceSession&…...
【TS】TypeScript内置条件类型-ReturnType
ReturnType 在TypeScript中,ReturnType 是一个内置的条件类型(Conditional Type),它用于获取一个函数返回值的类型。这个工具类型非常有用,特别是当你需要引用某个函数的返回类型,但又不想直接写出那个具体…...

【c语言数据结构】超详细!模拟实现双向链表(初始化、销毁、头删、尾删、头插、尾插、指定位置插入与删除、查找数据、判断链表是否为空)
特点: 结构:指向前一结点指针数据指向后一结点指针由于循环,尾结点的下一结点next指向头结点(哨兵结点)空的双向链表只有自循环的哨兵结点(头结点) 模拟实现双向链表 LIST.h #define _CRT_…...

第十四届蓝桥杯嵌入式国赛
一. 前言 本篇博客主要讲述十四届蓝桥杯嵌入式的国赛题目,包括STM32CubeMx的相关配置以及相关功能实现代码以及我在做题过程中所遇到的一些问题和总结收获。如果有兴趣的伙伴还可以去做做其它届的真题,可去 蓝桥云课 上搜索历届真题即可。 二. 题目概述 …...
(k8s)kubernetes集群基于Containerd部署
资源列表 基础环境 一、基础环境准备 1.1、关闭Swap分区 1.2、添加hosts解析 1.3、桥接的IPv4流量传递给iptables的链 二、准备Containerd容器运行时 2.1、安装Containerd 2.2、配置Containerd 2.3、启动Containerd 三、部署Kubernetes集群 3.1、安装Kubeadm工具 3.2、…...

python内置模块pathlib.Path类操作目录和文件
python自带的pathlib模块提供了很多路径相关的功能,而pathlib.Path 是pathlib 模块中的一个核心类,它代表了文件系统中的一个路径,实现功能比如创建、删除、移动文件,读取和写入文件内容,遍历目录等。 Path 类跟os.pa…...

react开发环境搭建
文章目录 准备工作创建 React 项目使用 create-react-app 创建 React 项目使用 Vite 创建 React 项目启动项目效果安装出现的情况 react项目文件讲解1. 项目根目录2. 其他可能的目录和文件3. 配置文件 准备工作 Node.js 安装方法: 方式一:使用 NVM 安装…...
python 逻辑语句简记
什么语言都少不了逻辑处理语句的使用,python的逻辑处理语句有自身的使用特点,稍稍总结记录一下 一、断言 assert 条件 条件触发,程序执行中断 二、条件语句 if 条件: 执行内容 三、循环语句 while 条件: 循环体…...

8.进销存系统(基于springboot的进销存系统)
目录 1.系统的受众说明 2.开发技术与环境配置 2.1 SpringBoot框架 2.2 Java语言简介 2.3 MySQL环境配置 2.4 idea介绍 2.5 mysql数据库介绍 2.6 B/S架构 3.系统分析与设计 3.1 可行性分析 3.1.1 技术可行性 3.1.2 操作可行性 3.1.3经济可行性 3.4.1 数据库…...
深入理解主键回显:提升数据操作效率与准确性
在软件开发的世界中,主键回显是一个常常被提及但又容易被忽视其重要性的概念。今天,我们就来深入探讨一下主键回显的奥秘。 一、什么是主键回显? 在数据库设计中,主键是用于唯一标识表中每一行记录的字段。而主键回显࿰…...

springboot+阿里云物联网教程
需求背景 最近有一个项目,需要用到阿里云物联网,不是MQ。发现使用原来EMQX的代码去连接阿里云MQTT直接报错,试了很多种方案都不行。最终还是把错误分析和教程都整理一下。 需要注意的是,阿里云物联网平台和MQ不一样。方向别走偏了。 概念描述 EMQX和阿里云MQTT有什么区别…...

QT Creator cmake 自定义项目结构, 编译输出目录指定
1. 目的 将不同的源文件放到不同的目录下进行管理, 如下: build: 编译输出目录 include: 头文件目录 rsources: 资源文件目录 src: cpp文件目录 2. 创建完cmake工程后修改CMakeLists.txt 配置 注 : 这里头文件目录是include, 所以在includ…...
lunar无第三方依赖的公历、农历、法定节假日...日历工具库
文章目录 介绍maven示例示例(前后端)网址文档 介绍 lunar是一款无第三方依赖的公历(阳历)、农历(阴历、老黄历)、道历、佛历工具,支持星座、儒略日、干支、生肖、节气、节日、彭祖百忌、吉神(喜神/福神/财神/阳贵神/阴贵神)方位、胎神方位、…...

(全网最细)ELF文件详解
ELF文件是什么 ELF文件是一种对象文件格式。ELF文件的全程是(Executeable and Linking Format,可执行可链接格式)。ELF文件格式主要有三种: 可重定向文件。可重定向文件就是可以用于和其他对象文件链接来创建一个可执行或者可分…...

Leetcode面试经典150题-39.组合总和
给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的 同一个 数字可以 无限制重复被选取 。如…...

海外云市场分析
海外云市场数据洞察 2024 H1 季度数据 H1季度,全球云基础设施服务指数同比增长21%,达到798亿美元 (相比去年增加134亿美元),三大云服务提供商— AWS,微软Azure 和GCP 营收总增长率为24%,占总市场66%。 其中三大云厂商同比营收增长排序(2024 H1):微软 31%,G…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...