当前位置: 首页 > news >正文

实战OpenCV之图像滤波

基础入门

        图像滤波是数字图像处理中一种非常重要的技术,主要用于图像噪声去除、图像平滑、突出图像特征,或者进行图像风格的转换。它通过数学运算对图像中的像素值进行修改,以达到特定的处理目的。图像滤波可以分为两大类,分别为:线性滤波、非线性滤波。

        线性滤波器通过一个固定的权重矩阵(即:滤波核或卷积核)与图像的每个像素及其周围像素进行卷积操作,从而实现对图像的平滑或锐化。这个权重矩阵决定了滤波的效果,常见的线性滤波器有:高斯滤波、均值滤波等。

        非线性滤波不遵循线性叠加原则,常见的有中值滤波等。非线性滤波对于消除椒盐噪声尤为有效,因为它能保留边缘细节。

均值滤波

        均值滤波是最基础的线性滤波方法,它将每个像素点替换为其邻域像素值的平均值,这有助于消除图像中的随机噪声。在OpenCV中,均值滤波使用cv::blur函数,其函数原型如下。

void cv::blur(InputArray src, OutputArray dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT);

        各个参数的含义如下。

        

相关文章:

实战OpenCV之图像滤波

基础入门 图像滤波是数字图像处理中一种非常重要的技术,主要用于图像噪声去除、图像平滑、突出图像特征,或者进行图像风格的转换。它通过数学运算对图像中的像素值进行修改,以达到特定的处理目的。图像滤波可以分为两大类,分别为:线性滤波、非线性滤波。 线性滤波器通过一…...

AI学习指南深度学习篇-Adadelta的Python实践

AI学习指南深度学习篇-Adadelta的Python实践 深度学习是人工智能领域的一个重要分支,近年来在各个领域都取得了显著的成就。在深度学习的模型训练中,优化算法起着至关重要的作用,其中Adadelta是一种常用的优化算法之一。本篇博客将使用Pytho…...

go webapi上传文件 部属到linux

go厉害的地方,linux服务器上无需安装任何依赖就可以运行,大赞! 一、编译 #在Goland中cmd中执行 go env -w GOARCHamd64 go env -w GOOSlinux go build main.go # 切换回来 否则无法运行 go env -w GOOSwindows go run main.go 拷贝到linux服…...

接口加解密及数据加解密

目录 一、 加解密方式介绍 1.1 Hash算法加密 1.2. 对称加密 1.3 非对称加密 二、 我们要讲什么? 三、 接口加解密 四、 数据加解密 一、 加解密方式介绍 所有的加密方式我们可以分为三类:对称加密、非对称加密、Hash算法加密。 算法内部的具体实现…...

开创远程就可以监测宠物健康新篇章

在宠物健康监测的新纪元,智能听诊器凭借其先进技术,正逐步改变我们对宠物健康监护的传统认知。这不仅是一款监测工具,而是宠物健康管理的得力助手,为宠物主人和兽医提供前所未有的洞察力和便捷性。 深度学习算法:智能…...

二叉树的基本概念(上)

文章目录 🍊自我介绍🍊简介🍊树的定义树中的专业术语树的分类 🍊二叉树的特性讲解 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞关注评论收藏(一键四连)哦~ 🍊自我介…...

aws s3 存储桶 前端组件上传简单案例

写一个vue3 上传aws oss存储的案例 使用到的插件 npm install aws-sdk/client-s3 注意事项 : 1. 本地调试 , 需要设置在官网设置跨域 必须!!! 否则调试不了 ,前端代理是不起作用的 ,因为是插…...

【开源免费】基于SpringBoot+Vue.JS墙绘产品展示交易平台(JAVA毕业设计)

本文项目编号 T 049 ,文末自助获取源码 \color{red}{T049,文末自助获取源码} T049,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…...

python爬虫初体验(四)—— 百度文库PPT的爬取

文章目录 1. 安装包2. 相关代码3. 说明4. 注意事项5. 扩展功能5.1 多页面下载5.2 输入地址下载 在Python 2中编写一个爬虫来大量下载图片,可以使用requests库来发送HTTP请求,并使用BeautifulSoup来解析HTML页面。此外,可以使用urllib2库来下载…...

下水道内缺陷识别检测数据集 yolo数据集 共2300张

下水道内缺陷识别检测数据集 yolo数据集 共2300张 下水道内部缺陷识别数据集(Sewer Interior Defect Recognition Dataset, SIDRD) 摘要 SIDRD 是一个专门针对下水道内部缺陷识别的数据集,旨在为城市基础设施维护和管理提供一个标准化的训练…...

年轻用户对Facebook的使用趋势分析

在社交媒体的蓬勃发展中,Facebook作为全球最大的社交平台之一,尽管面临着来自新兴平台的竞争,仍然在年轻用户中扮演着重要角色。然而,年轻用户对Facebook的使用方式和趋势却在不断变化。本文将探讨年轻用户对Facebook的使用趋势&a…...

EasyCVR全方位安全守护智慧电厂:构建高效视频监控系统优势分析

随着信息技术的飞速发展和数字化时代的到来,电厂作为能源供应的重要枢纽,其安全性和管理效率成为社会各界关注的焦点。为了满足电厂对高效、智能、可靠视频监控系统的需求,基于EasyCVR平台建设的电厂视频监控系统应运而生。 一、系统构成 基…...

基于深度学习的情感生成与交互

基于深度学习的情感生成与交互是一个新兴的研究领域,旨在通过深度学习技术生成具有情感的反应,以增强人机交互的自然性和有效性。该技术涉及情感识别、自然语言处理、计算机视觉等多个领域,并在多个应用场景中展现出潜力。 情感生成的主要方…...

JavaScript匿名函数

引言 JavaScript是一种广泛使用的脚本语言,用于Web开发和其他领域。在JavaScript中,函数是非常重要的组成部分,它们允许开发者组织代码、复用代码以及执行特定的任务。本文将探讨一种特殊的函数类型——匿名函数,并介绍如何使用它…...

线性判别分析(LDA)中计算两个类的中心点在投影方向w上的投影示例

通过一个具体的例子,详细说明 w T μ 0 w^T \mu_0 wTμ0​ 和 w T μ 1 w^T \mu_1 wTμ1​ 如何表示两个类的中心点在投影方向 w w w 上的投影。 假设: 我们有两个类的数据集,均值向量 μ 0 \mu_0 μ0​ 和 μ 1 \mu_1 μ1​&#xff…...

前端知识——标签知识

1.p段落标签 ——一个p标签表示一个段落 单独占一行 >p标签里面不可以嵌套其它的块级标签(div h1~h6 p等) 会导致浏览器自动分裂成两个标签 不规范的写法 >但是可以包裹span标签 2.span标签 ——包裹文字标签 可以和span一行显示 3.文本格式化标签 ——给…...

使用Docker和cpolar在Linux服务器上搭建DashDot监控面板

使用Docker和cpolar在Linux服务器上搭建DashDot监控面板 前言环境准备安装Docker下载Dashdot镜像 部署DashDot应用本地访问DashDot服务安装cpolar内网穿透固定DashDot公网地址结语 前言 在这个数字化飞速发展的时代,服务器作为支撑各种应用和服务的基础设施&#xf…...

解决docker拉取镜像报错

报错信息如下: Error response from daemon: Get "https://registry-1.docker.io/v2/": net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)网上试了很多方式,有的需要配置DNS解析&…...

C++之STL—deque容器

双端数组 区别于 vector (单端数组)&#xff0c; 构造函数 注意&#xff1a;读取数据时&#xff0c;const修饰保证函数内只能读取&#xff0c;不能修改数据 void print(const deque<int>& deq) {for (deque<int>::const iterator it deq.begin(); it ! deq.e…...

leveldb前缀匹配查找Seek

个人随笔 (Owed by: 春夜喜雨 http://blog.csdn.net/chunyexiyu) 参考&#xff1a;https://github.com/google/leveldb/blob/main/include/leveldb/db.h 参考&#xff1a;百度AI 1. 背景 最近偶然发现了&#xff0c;leveldb前缀匹配查找的功能。 之前没有从这个角度去想过See…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

6.计算机网络核心知识点精要手册

计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法&#xff1a;数据与控制信息的结构或格式&#xff0c;如同语言中的语法规则语义&#xff1a;控制信息的具体含义和响应方式&#xff0c;规定通信双方"说什么"同步&#xff1a;事件执行的顺序与时序…...

【多线程初阶】单例模式 指令重排序问题

文章目录 1.单例模式1)饿汉模式2)懒汉模式①.单线程版本②.多线程版本 2.分析单例模式里的线程安全问题1)饿汉模式2)懒汉模式懒汉模式是如何出现线程安全问题的 3.解决问题进一步优化加锁导致的执行效率优化预防内存可见性问题 4.解决指令重排序问题 1.单例模式 单例模式确保某…...

AT模式下的全局锁冲突如何解决?

一、全局锁冲突解决方案 1. 业务层重试机制&#xff08;推荐方案&#xff09; Service public class OrderService {GlobalTransactionalRetryable(maxAttempts 3, backoff Backoff(delay 100))public void createOrder(OrderDTO order) {// 库存扣减&#xff08;自动加全…...

Linux信号保存与处理机制详解

Linux信号的保存与处理涉及多个关键机制&#xff0c;以下是详细的总结&#xff1a; 1. 信号的保存 进程描述符&#xff08;task_struct&#xff09;&#xff1a;每个进程的PCB中包含信号相关信息。 pending信号集&#xff1a;记录已到达但未处理的信号&#xff08;未决信号&a…...