ChatGPT 提取文档内容,高效制作PPT、论文
随着人工智能生成内容(AIGC)的快速发展,利用先进的技术工具如 ChatGPT 的 RAG(Retrieval-Augmented Generation,检索增强生成)模式,可以显著提升文档内容提取和内容创作的效率。以下将详细介绍如何利用 ChatGPT 的 RAG 技术从文档中提取内容,并高效制作 PPT 和论文。
先给大家介绍一下技术实现思路:ChatFile: Your personal AI productivity tool for a smarter brain.
一、理解 RAG 技术
RAG(检索增强生成) 是一种结合了信息检索和生成模型的技术。其基本流程包括:
- 检索(Retrieval): 从大量文档或数据库中检索与查询相关的信息。
- 生成(Generation): 利用检索到的信息,通过生成模型(如 ChatGPT)生成高质量的回答或内容。
这种结合方式使得生成模型能够基于更准确和相关的上下文信息,提供更具针对性和准确性的内容。
二、利用 ChatGPT 的 RAG 技术提取文档内容
1. 数据准备
- 文档整理: 将需要提取内容的文档(如PDF、Word、网页等)进行整理,确保文本内容可被机器读取。
- 知识库构建: 将文档内容导入到一个可搜索的知识库中。可以使用向量数据库(如 Pinecone、Weaviate)来存储文本向量,以便高效检索相关内容。
2. 设置 RAG 流程
- 集成检索模块: 使用 API 或 SDK,将知识库与 ChatGPT 集成,确保在生成内容前能够先检索到相关文档片段。
- 配置生成模型: 确保 ChatGPT 能够接收检索到的内容作为上下文,生成所需的摘要、要点或详细内容。
3. 内容提取步骤
以提取某主题的关键信息为例:
- 输入查询: 向 ChatGPT 提出具体问题或请求,如“请总结关于X主题的主要观点。”
- 检索相关文档: RAG 模块根据查询,从知识库中检索最相关的文档片段。
- 生成摘要: ChatGPT 基于检索到的内容,生成准确的摘要或要点。
三、高效制作 PPT
1. 结构规划
利用 ChatGPT 的生成能力,根据提取的内容自动生成 PPT 的大纲和结构。例如:
- 标题页
- 目录
- 引言
- 主要内容
- 要点1
- 要点2
- …
- 结论
- 参考文献
2. 内容填充
通过 RAG 提取的详细内容,生成每一页的具体内容。例如:
- 引言页: 生成关于主题的背景介绍。
- 每个要点页: 提供详细说明、图表建议、案例分析等。
3. 设计优化
虽然 ChatGPT 可以生成文字内容,但设计部分可以结合工具如 Microsoft PowerPoint、Canva 或 Google Slides,利用其模板和设计功能,进一步美化PPT。
4. 自动化工具
利用一些自动化工具或插件,将 ChatGPT 生成的内容自动导入PPT。例如:
- Zapier: 连接 ChatGPT 和 PowerPoint,实现内容的自动传递。
- Python脚本: 使用 Python 库(如 python-pptx)编写脚本,将生成的内容批量导入到PPT模板中。
四、高效撰写论文
1. 选题与大纲
利用 ChatGPT 生成论文的选题建议和大纲结构。例如:
- 引言
- 文献综述
- 研究方法
- 结果与讨论
- 结论
2. 文献综述
通过 RAG 技术检索相关文献,ChatGPT 可以帮助总结已有研究成果,形成文献综述部分。
3. 数据分析与讨论
- 数据处理: 利用统计软件或编程工具(如 R、Python)处理研究数据。
- 结果描述: ChatGPT 可以基于数据结果,生成清晰的描述和解释。
- 讨论部分: 分析结果的意义,与现有研究的对比,提出未来研究方向。
4. 引用与参考文献
利用 RAG 技术检索准确的引用信息,ChatGPT 可以协助生成符合格式要求的参考文献列表(如 APA、MLA 格式)。
5. 校对与润色
最后,使用 ChatGPT 对撰写的论文进行语法检查、风格优化和一致性校对,提升论文质量。
五、最佳实践与建议
- 确保数据质量: RAG 技术的效果依赖于知识库中的文档质量,确保数据源的可靠性和准确性。
- 明确指令: 给予 ChatGPT 清晰、具体的指令,以获取更精准的生成内容。
- 融合人工智慧与人工审核: 虽然 ChatGPT 能大幅提升效率,但最终内容应由专业人士审核,以确保准确性和学术规范。
- 持续优化知识库: 定期更新和扩展知识库,保证信息的时效性和全面性。
- 安全与隐私: 在使用 RAG 模式处理敏感文档时,确保数据的安全性和隐私保护。
六、工具推荐
- OpenAI API: 访问 ChatGPT 的强大生成能力,支持定制化的应用场景。
- 向量数据库: 如 Pinecone、Weaviate,用于高效的文档检索。
- PPT 制作工具: Microsoft PowerPoint、Canva、Google Slides。
- 自动化工具: Zapier、Integromat(Make)等,用于连接和自动化工作流程。
- 编程库: Python 的 python-pptx 库,用于自动化生成和编辑PPT。
七、结语
通过结合 ChatGPT 的 RAG 技术,能够显著提升从文档内容提取到PPT与论文制作的效率与质量。这不仅节省了时间,还能确保内容的全面性和准确性。随着AIGC技术的不断进步,未来在内容创作领域将有更多创新和应用场景涌现,助力个人和团队实现更高效的工作流程。
相关文章:

ChatGPT 提取文档内容,高效制作PPT、论文
随着人工智能生成内容(AIGC)的快速发展,利用先进的技术工具如 ChatGPT 的 RAG(Retrieval-Augmented Generation,检索增强生成)模式,可以显著提升文档内容提取和内容创作的效率。以下将详细介绍如…...
3、等保1.0 与 2.0 的区别
数据来源:3.等保1.0和2.0的区别_哔哩哔哩_bilibili 等保1.0时代VS等保2.0时代五个规定动作:定级、备案、建设整改、等级测评、监督检查工作内容维持5个规定动作,增加风险评估、安全监测、通报预警、事件调查、数据防护自主可控、供应链安全、…...
Angular面试题九
一、在Angular中,你如何管理全局状态或跨组件共享数据?有哪些常见的实现方式? 在Angular中,管理全局状态或跨组件共享数据是应用开发中的一个重要方面。这有助于保持数据的一致性和可维护性,特别是在复杂的应用中。以下…...
(转载)智能指针shared_ptr从C++11到C++20
shared_ptr和动态数组 - apocelipes - 博客园 (cnblogs.com) template<typename T> std::shared_ptr<T> make_shared_array(size_t size) { return std::shared_ptr<T>(new T[size],std::default_delete<T[]>()); } std::shar…...
Ubuntu 上安装 Miniconda
一、下载 Miniconda 打开终端。访问 Anaconda 官方仓库下载页面https://repo.anaconda.com/miniconda/选择Miniconda3-py310_24.7.1-0-Linux-x86_64.sh,进行下载。文件名当中的py310_24.7.1表示,在 conda 的默认的 base 环境中的 Python 版本是3.10&…...

【Vue系列五】—Vue学习历程的知识分享!
前言 本篇文章讲述前端工程化从模块化到如今的脚手架的发展,以及Webpack、Vue脚手架的详解! 一、模块化 模块化就是把单独的功能封装到模块(文件)中,模块之间相互隔离,但可以通过特定的接口公开内部成员…...

CaLM 因果推理评测体系:如何让大模型更贴近人类认知水平?
CaLM 是什么 CaLM(Causal Evaluation of Language Models,以下简称“CaLM”)是上海人工智能实验室联合同济大学、上海交通大学、北京大学及商汤科技发布首个大模型因果推理开放评测体系及开放平台。首次从因果推理角度提出评估框架ÿ…...

深入探索卷积神经网络(CNN)
深入探索卷积神经网络(CNN) 前言图像的数字表示灰度图像RGB图像 卷积神经网络(CNN)的架构基本组件卷积操作填充(Padding)步幅(Strides) 多通道图像的卷积池化层全连接层 CNN与全连接…...

【C++篇】手撕 C++ string 类:从零实现到深入剖析的模拟之路
文章目录 C string 类的模拟实现:从构造到高级操作前言第一章:为什么要手写 C string 类?1.1 理由与价值 第二章:实现一个简单的 string 类2.1 基本构造与析构2.1.1 示例代码:基础的 string 类实现2.1.2 解读代码 2.2 …...

毕业设计选题:基于ssm+vue+uniapp的校园失物招领小程序
开发语言:Java框架:ssmuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:M…...

[系统设计总结] - Proximity Service算法介绍
问题描述 Proximity Service广泛应用于各种地图相关的服务中比如外卖,大众点评,Uber打车,Google地图中,其中比较关键的是我们根据用户的位置来快速找到附近的餐厅,司机,外卖员也就是就近查询算法。 主流的…...

变压吸附制氧机的应用范围
变压吸附制氧机是一种利用变压吸附技术从空气中分离出氧气的设备。该技术通过吸附剂在不同压力下的吸附与解吸性能,实现了氧气的有效分离和纯化。 工业领域 在工业领域,变压吸附制氧机同样具有广泛的应用。首先,钢铁企业在生产过程中需要大量…...

MATLAB绘图基础8:双变量图形绘制
参考书:《 M A T L A B {\rm MATLAB} MATLAB与学术图表绘制》(关东升)。 8.双变量图形绘制 8.1 散点图 散点图用于显示两个变量间的关系,每个数据点在图上表示为一个点,一个变量在 X {\rm X} X轴,一个变量在 Y {\rm Y} Y轴&#…...
Appium高级话题:混合应用与原生应用测试策略
Appium高级话题:混合应用与原生应用测试策略 在移动应用开发领域,混合应用与原生应用各有千秋,但它们的测试策略却大相径庭。本文旨在深入探讨这两种应用类型的测试挑战,并介绍如何利用自动化测试软件ItBuilder高效解决这些问题&…...
windows源码安装protobuf,opencv,ncnn
安装笔记 cmake 在windows可以使用-G"MinGW Makefiles" 搭配make使用,install出来的lib文件时.a结尾的,适合linux下面使用。所以在windows上若无需求使用-G"NMake Makefiles" 搭配nmake。 但是windows上使用-G"NMake Makefil…...
MicroPython 怎么搭建工程代码
在MicroPython中搭建工程代码可以遵循以下步骤: 1. 准备工作 安装MicroPython固件:确保已经将MicroPython烧录到ESP32开发板中。准备开发环境: 可以使用文本编辑器(如VS Code、Thonny、uPyCraft等)来编写代码。 2.…...

Android studio安装问题及解决方案
Android studio安装问题及解决方案 gradle已经安装好了,但是每次就是找不到gradle的位置,每次要重新下载,很慢,每次都不成功 我尝试用安装android studio时自带的卸载程序,卸载android studio,然后重新下…...
前端面试题(二)
6. 深入 JavaScript this 关键字的指向是什么? this 的指向是在函数执行时决定的。默认情况下,非严格模式下 this 指向全局对象(浏览器中为 window),严格模式下 this 为 undefined。在对象方法中,this 通常…...

【C++】stack和queue的使用及模拟实现
stack就是栈的意思,这个结构遵循后进先出(LIFO)的原则,可以将栈想象为一个子弹夹,先进去的子弹后出来。 queue就是队列的意思,这个结构遵循先进先出(FIFO)的原则,可以将对列想象成我们排队买饭的场景,先排…...

MongoDB解说
MongoDB 是一个流行的开源 NoSQL 数据库,它使用了一种被称为文档存储的数据库模型。 与传统的关系型数据库管理系统(RDBMS)不同,MongoDB 不使用表格来存储数据,而是使用了一种更为灵活的格式——JSON 样式的文档。 这…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...