基于深度学习的数字识别系统的设计与实现(python、yolov、PyQt5)
💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌
温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :)Java精品实战案例《700套》
2025最新毕业设计选题推荐:最热的500个选题o( ̄▽ ̄)d
介绍
- 要] 在数字化时代,数字识别技术的发展日益受到重视,其在各个领域如电子支付、自动化生产等中的广泛应用需求也随之增加。为满足这一需求,本论文基于深度学习技术,设计并实现了一种全面的数字识别系统。该系统包含了数据集收集与处理、YOLOv5算法设计、模型训练、界面设计以及图片、视频、实时摄像头、RTSP视频流识别等功能模块。通过对系统功能与性能进行综合测试,验证了其在各种应用场景下的准确性和实用性。具体而言,数据集收集与处理模块能够有效处理大规模数据,为后续模型训练提供充分支持;YOLOv算法模块采用了先进的目标检测技术,实现了高效的数字识别功能;界面设计模块采用PyQt5框架,为用户提供了友好的交互体验;同时,系统还支持图片、视频、实时摄像头、RTSP视频流等多种数据源的数字识别,满足了不同场景的需求。因此,该数字识别系统具有较高的实用价值,有望在数字化时代的各个领域中发挥重要作用。
- 数字识别技术;深度学习;YOLOv5模型
演示视频
基于深度学习的数字识别系统的设计与实现(python、yolov、PyQt5)_哔哩哔哩_bilibili
系统功能
-
- 功能需求分析
数字识别系统具有以下功能和特点:系统可以接收用户提供的数字图像作为输入,并对输入图像进行预处理,包括拒绝和改进操作,以提高数字身份的准确性。系统可以准确识别图像中的数字,实现多类别ID,包括从0到9的数字。为了提供可靠的识别结果,该系统能够实现数字身份的高度准确性。同时,系统具有实时性能,可在短时间内完成数字识别,满足用户对快速识别结果的需求。用户识别结果以可视化方式显示,例如识别次数和置信度。此外,该系统具有良好的可扩展性,可以轻松扩展到其他类型的图像识别任务,以满足不同应用场景的需求。
-
- 非功能需求分析
数字识别系统还具有以下特点和优点:系统界面简单明了,操作简单易懂,用户可以轻松使用数字识别系统,保证了良好的用户友好性。该系统在各种复杂环境下都能保持稳定的识别性能,对光、噪等因素有一定的抵抗力,保证了系统的可靠性。同时,系统注重用户数据的安全和隐私,采取措施防止数据泄露和滥用。系统性能高,可在短时间内完成数字识别任务,资源消耗低。系统代码结构清晰,易于维护和扩展,便于后期系统更新和优化。系统具有一定的可移植性,可以运行在不同的硬件平台和操作系统上,并具有一定程度的跨平台性。此外,系统还支持性能调优,可根据不同的应用场景和要求进行调优,提高数字识别的准确性和效率。
-
- 系统流程分析
系统的训练流程可以分为以下几个步骤:
1. 安装依赖:
-用户需要确保本地环境中已经安装了Python和相关的依赖库,例如通过pip安装requirements.txt中列出的依赖库。
-在cmd中执行pip install命令,根据requirements.txt中提供的依赖信息安装所需的Python库。
2. 测试:
-用户可以通过简单的测试来验证环境是否配置正确,例如拍摄一张图片放入inference文件夹中,并在cmd中执行detect.py进行检测。
-用户需要激活YOLOv环境,并运行detect.py命令,指定所需的参数如权重文件、置信度阈值等,以进行对象检测测试。
3. 数据准备:
-用户需要创建datasets文件夹,并将数据集放入其中进行统一管理。
-对于YOLO格式的数据集,用户需要生成train_list.txt和val_list.txt文件,分别存放训练集和验证集的图片路径。
4. 配置训练的相关文件:
-用户需要配置模型文件和数据集文件,包括YOLOv-Helmet.yaml和data.yaml两个文件。
-配置模型文件时,用户需要根据数据集的类别数量进行修改,并保存配置文件。
-配置数据集文件时,用户需要指定训练、验证和测试集的路径,并设置数据集的类别数量和类别名称。
5. 开始训练:
-用户可以通过执行train.py脚本开始训练,传入所需的参数如权重文件、模型配置文件、数据配置文件等。
-训练过程中,模型将按照设定的参数进行训练,并在每个epoch结束后保存模型参数和训练结果。
-训练结束后,用户可以在runs/train/exp/文件夹中查看训练结果和模型文件。
6. 训练结果与推理:
-训练结束后,用户可以在runs/train/exp/文件夹中找到训练结果和最佳模型的权重文件。
-用户可以通过执行detect.py脚本进行推理,传入训练好的模型权重和测试图片的路径,进行对象检测并查看推理结果。
以上就是系统的训练流程,用户可以根据实际需求和场景,按照上述步骤逐步进行系统训练,并验证训练结果。
系统截图
可行性分析
在技术可行性方面,系统所采用的Python、YOLOv算法和PyQt5框架都经过了广泛验证,具有成熟的技术基础和强大的功能支持。Python作为一种简洁而强大的编程语言,拥有丰富的库和工具,能够满足系统开发的各种需求。YOLOv算法是目标检测领域的前沿技术,具有快速、准确的特点,已在多个应用场景中得到验证和应用。PyQt5作为GUI开发框架,提供了丰富的组件和布局管理器,能够实现用户友好的图形界面。因此,从技术角度来看,系统的设计和实现具有良好的可行性[15]。
在经济可行性方面,系统的开发成本主要包括人力成本、硬件设备成本和软件许可成本等。Python、YOLOv算法和PyQt5框架都是开源的,无需支付额外的软件许可费用。此外,Python拥有庞大的开发者社区和丰富的开源资源,能够提供免费的技术支持和解决方案。因此,系统的开发成本相对较低,具有较好的经济可行性[16]。
在操作可行性方面,系统采用的技术和工具都具有良好的用户文档和社区支持,开发人员可以轻松获取相关信息和帮助。Python语言简洁易学,适合开发人员快速上手;YOLOv算法和PyQt5框架也有丰富的示例代码和教程,有助于开发人员理解和应用。此外,系统的图形界面设计符合用户习惯和操作逻辑,能够提供良好的用户体验。因此,从操作角度来看,系统具有良好的可行性[17]。
最后,需要考虑到法律法规的变化和更新,及时调整系统设计和运营策略,保持系统的合规性和稳健性。通过合理评估法律风险和制定有效的合规措施,可以降低项目的法律风险,保障系统的可持续发展和商业运营。
操作层面上更具可行性,提高了用户满意度,为系统的成功实施创造了良好的操作环境。
国内外研究现状
在国内,数字识别技术得到了广泛的研究和应用。例如,在电子支付领域,支付宝和微信支付等移动支付平台广泛采用了数字识别技术,通过扫描二维码或识别数字交易信息实现了便捷的支付功能。另外,在自动化生产领域,一些制造企业利用数字识别技术对生产流程进行数字化监控和管理,实现了自动化生产和质量控制。此外,数字识别技术还被应用于图像检索、车牌识别、智能安防等领域,在社会生活中发挥了重要作用[5]。
近年来,随着深度学习技术的发展,国内研究者在数字识别领域取得了一系列重要进展。例如,某些研究团队提出了基于深度学习的手写数字识别系统,能够实现对手写数字的高效识别和分类;另外,也有研究团队针对车牌识别等特定场景提出了基于深度学习的数字识别解决方案,取得了较高的识别准确率和鲁棒性[6]。
综上所述,国内在数字识别技术研究和应用方面已经取得了一定的成就,但仍然面临着诸如识别准确率提升、实时性和效率改进等挑战。因此,深入研究和探索数字识别技术的创新和应用,将有助于推动国内数字化时代的信息处理和应用发展。
在国外,数字识别技术也得到了广泛的研究和应用,并且取得了一些重要的成果。举例而言,在金融领域,国外的银行和金融机构普遍采用数字识别技术来处理支票和汇票等金融文档,以提高文档处理效率和准确性[7]。另外,在零售业,一些国外的零售商利用数字识别技术来实现商品条形码的扫描和识别,从而加快商品结账流程和库存管理。此外,数字识别技术还被应用于医疗影像诊断、交通管理、智能交通系统等领域,为社会生活和经济发展带来了诸多便利。
在学术界,国外的研究者也积极开展了数字识别技术方面的研究工作。例如,一些研究团队提出了基于深度学习的图像识别系统,能够实现对图像中数字信息的高效识别和提取;另外,也有研究团队利用深度学习技术提出了对手写数字的识别算法,取得了较高的识别准确率和鲁棒性[8]。
综上所述,国外在数字识别技术研究和应用方面已经取得了一些重要进展,并且在多个领域都展现出了广泛的应用前景。然而,国外的研究仍然面临着诸如数据隐私保护、算法优化和系统集成等挑战,需要进一步加强研究和探索。
本系统研究内容包括以下几个方面:
1. 数据集收集与处理:收集并处理包含数字的图像和视频数据集,清洗数据、标注数据,为模型训练提供准备工作。
2. YOLOv算法设计:深入研究YOLOv算法原理,设计适用于数字识别的模型结构,优化算法以提高识别准确性和速度。
3. 模型训练:利用收集并处理好的数据集,对设计的YOLOv模型进行训练,调整参数以提高模型性能。
4. 界面设计:基于PyQt5框架设计用户友好的界面,实现用户与系统的交互功能。
5. 图片、视频、实时摄像头、RTSP视频流识别:实现数字识别系统对不同数据源的识别功能,包括静态图片、视频文件、实时摄像头和RTSP视频流的实时识别功能。
通过对上述内容的研究和实现,本文旨在构建一种功能完备、性能优良的基于深度学习的数字识别系统,为数字化时代的应用场景提供高效、准确的数字识别解决方案。
功能代码
# YOLOv5 🚀 requirements
# Usage: pip install -r requirements.txt# Base ------------------------------------------------------------------------
gitpython
ipython # interactive notebook
matplotlib>=3.2.2
numpy==1.24.3
opencv-python>=4.1.1
Pillow==8.3.0
psutil # system resources
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
thop>=0.1.1 # FLOPs computation
#torch>=1.7.0 # see https://pytorch.org/get-started/locally (recommended)
#torchvision>=0.8.1
tqdm>=4.64.0
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012# Logging ---------------------------------------------------------------------
tensorboard>=2.4.1
# clearml>=1.2.0
# comet# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0# Export ----------------------------------------------------------------------
# coremltools>=6.0 # CoreML export
# onnx>=1.9.0 # ONNX export
# onnx-simplifier>=0.4.1 # ONNX simplifier
# nvidia-pyindex # TensorRT export
# nvidia-tensorrt # TensorRT export
# scikit-learn<=1.1.2 # CoreML quantization
# tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev # OpenVINO export# Deploy ----------------------------------------------------------------------
# tritonclient[all]~=2.24.0# Extras ----------------------------------------------------------------------
# mss # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0 # COCO mAP
# roboflow
# ultralytics # HUB https://hub.ultralytics.com
文章下方名片联系我即可~
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
相关文章:

基于深度学习的数字识别系统的设计与实现(python、yolov、PyQt5)
💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :) Java精品实战案例《700套》 2025最新毕业设计选题推荐…...

ChatGPT 提取文档内容,高效制作PPT、论文
随着人工智能生成内容(AIGC)的快速发展,利用先进的技术工具如 ChatGPT 的 RAG(Retrieval-Augmented Generation,检索增强生成)模式,可以显著提升文档内容提取和内容创作的效率。以下将详细介绍如…...

3、等保1.0 与 2.0 的区别
数据来源:3.等保1.0和2.0的区别_哔哩哔哩_bilibili 等保1.0时代VS等保2.0时代五个规定动作:定级、备案、建设整改、等级测评、监督检查工作内容维持5个规定动作,增加风险评估、安全监测、通报预警、事件调查、数据防护自主可控、供应链安全、…...

Angular面试题九
一、在Angular中,你如何管理全局状态或跨组件共享数据?有哪些常见的实现方式? 在Angular中,管理全局状态或跨组件共享数据是应用开发中的一个重要方面。这有助于保持数据的一致性和可维护性,特别是在复杂的应用中。以下…...

(转载)智能指针shared_ptr从C++11到C++20
shared_ptr和动态数组 - apocelipes - 博客园 (cnblogs.com) template<typename T> std::shared_ptr<T> make_shared_array(size_t size) { return std::shared_ptr<T>(new T[size],std::default_delete<T[]>()); } std::shar…...

Ubuntu 上安装 Miniconda
一、下载 Miniconda 打开终端。访问 Anaconda 官方仓库下载页面https://repo.anaconda.com/miniconda/选择Miniconda3-py310_24.7.1-0-Linux-x86_64.sh,进行下载。文件名当中的py310_24.7.1表示,在 conda 的默认的 base 环境中的 Python 版本是3.10&…...

【Vue系列五】—Vue学习历程的知识分享!
前言 本篇文章讲述前端工程化从模块化到如今的脚手架的发展,以及Webpack、Vue脚手架的详解! 一、模块化 模块化就是把单独的功能封装到模块(文件)中,模块之间相互隔离,但可以通过特定的接口公开内部成员…...

CaLM 因果推理评测体系:如何让大模型更贴近人类认知水平?
CaLM 是什么 CaLM(Causal Evaluation of Language Models,以下简称“CaLM”)是上海人工智能实验室联合同济大学、上海交通大学、北京大学及商汤科技发布首个大模型因果推理开放评测体系及开放平台。首次从因果推理角度提出评估框架ÿ…...

深入探索卷积神经网络(CNN)
深入探索卷积神经网络(CNN) 前言图像的数字表示灰度图像RGB图像 卷积神经网络(CNN)的架构基本组件卷积操作填充(Padding)步幅(Strides) 多通道图像的卷积池化层全连接层 CNN与全连接…...

【C++篇】手撕 C++ string 类:从零实现到深入剖析的模拟之路
文章目录 C string 类的模拟实现:从构造到高级操作前言第一章:为什么要手写 C string 类?1.1 理由与价值 第二章:实现一个简单的 string 类2.1 基本构造与析构2.1.1 示例代码:基础的 string 类实现2.1.2 解读代码 2.2 …...

毕业设计选题:基于ssm+vue+uniapp的校园失物招领小程序
开发语言:Java框架:ssmuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:M…...

[系统设计总结] - Proximity Service算法介绍
问题描述 Proximity Service广泛应用于各种地图相关的服务中比如外卖,大众点评,Uber打车,Google地图中,其中比较关键的是我们根据用户的位置来快速找到附近的餐厅,司机,外卖员也就是就近查询算法。 主流的…...

变压吸附制氧机的应用范围
变压吸附制氧机是一种利用变压吸附技术从空气中分离出氧气的设备。该技术通过吸附剂在不同压力下的吸附与解吸性能,实现了氧气的有效分离和纯化。 工业领域 在工业领域,变压吸附制氧机同样具有广泛的应用。首先,钢铁企业在生产过程中需要大量…...

MATLAB绘图基础8:双变量图形绘制
参考书:《 M A T L A B {\rm MATLAB} MATLAB与学术图表绘制》(关东升)。 8.双变量图形绘制 8.1 散点图 散点图用于显示两个变量间的关系,每个数据点在图上表示为一个点,一个变量在 X {\rm X} X轴,一个变量在 Y {\rm Y} Y轴&#…...

Appium高级话题:混合应用与原生应用测试策略
Appium高级话题:混合应用与原生应用测试策略 在移动应用开发领域,混合应用与原生应用各有千秋,但它们的测试策略却大相径庭。本文旨在深入探讨这两种应用类型的测试挑战,并介绍如何利用自动化测试软件ItBuilder高效解决这些问题&…...

windows源码安装protobuf,opencv,ncnn
安装笔记 cmake 在windows可以使用-G"MinGW Makefiles" 搭配make使用,install出来的lib文件时.a结尾的,适合linux下面使用。所以在windows上若无需求使用-G"NMake Makefiles" 搭配nmake。 但是windows上使用-G"NMake Makefil…...

MicroPython 怎么搭建工程代码
在MicroPython中搭建工程代码可以遵循以下步骤: 1. 准备工作 安装MicroPython固件:确保已经将MicroPython烧录到ESP32开发板中。准备开发环境: 可以使用文本编辑器(如VS Code、Thonny、uPyCraft等)来编写代码。 2.…...

Android studio安装问题及解决方案
Android studio安装问题及解决方案 gradle已经安装好了,但是每次就是找不到gradle的位置,每次要重新下载,很慢,每次都不成功 我尝试用安装android studio时自带的卸载程序,卸载android studio,然后重新下…...

前端面试题(二)
6. 深入 JavaScript this 关键字的指向是什么? this 的指向是在函数执行时决定的。默认情况下,非严格模式下 this 指向全局对象(浏览器中为 window),严格模式下 this 为 undefined。在对象方法中,this 通常…...

【C++】stack和queue的使用及模拟实现
stack就是栈的意思,这个结构遵循后进先出(LIFO)的原则,可以将栈想象为一个子弹夹,先进去的子弹后出来。 queue就是队列的意思,这个结构遵循先进先出(FIFO)的原则,可以将对列想象成我们排队买饭的场景,先排…...

MongoDB解说
MongoDB 是一个流行的开源 NoSQL 数据库,它使用了一种被称为文档存储的数据库模型。 与传统的关系型数据库管理系统(RDBMS)不同,MongoDB 不使用表格来存储数据,而是使用了一种更为灵活的格式——JSON 样式的文档。 这…...

问:JAVA中唤醒阻塞的线程有哪些?
在Java中,唤醒阻塞线程的方法有多种,以下是常见的线程唤醒方法。 唤醒方法 使用notify()和notifyAll()方法 synchronized (obj) {obj.notify(); // 唤醒单个等待线程// obj.notifyAll(); // 唤醒所有等待线程 }使用interrupt()方法 Thread thread n…...

Github Webhook触发Jenkins自动构建
1.功能说明 Github Webhook可以触发Jenkins自动构建,通过配置Github Webhook,每次代码变更之后(例如push操作),Webhook会自动通知Jenkins服务器,Jenkins会自动执行预定义的构建任务(如Jenkins …...

ESP32-WROOM-32 [创建AP站点-客户端-TCP透传]
简介 基于ESP32-WROOM-32 开篇(刚买), 本篇讲的是基于固件 ESP32-WROOM-32-AT-V3.4.0.0(内含用户指南, 有AT指令说明)的TCP透传设置与使用 设备连接 TTL转USB线, 接ESP32 板 的 GND,RX2, TX2 指令介绍 注意,下面指…...

新闻文本分类识别系统Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+TensorFlow+Django网页界面
一、介绍 文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集(“体育类”, “财经类”, “房产类”, “家居类”, “教育类”, “科技类”, “时尚类”, “时政类”, “游戏类”, “娱乐类”),然…...

Java使用Map数据结构配合函数式接口存储方法引用
Java使用Map数据结构配合函数式接口存储方法引用 背景 需求中存在这样一直情况 一个国家下面有很多的州 每个州对应的计算日期方法是不同的 这个时候 就面临 可能会有很多if else 为了后期维护尽量还是不想采用这个方式,那么就可以使用策略模式 但是 使用策略带来的…...

LeetCode:2207. 字符串中最多数目的子序列(Java)
目录 2207. 字符串中最多数目的子序列 题目描述: 实现代码与解析: 遍历: 原理思路: 2207. 字符串中最多数目的子序列 题目描述: 给你一个下标从 0 开始的字符串 text 和另一个下标从 0 开始且长度为 2 的字符串 p…...

win10开机自启动方案总汇
win10开机自启动方案总汇 一、开始文件目录添加二、添加注册表启动程序三、服务启动3.1. 将程序注册为服务使用命令行创建服务设置服务启动类型启动服务 3.2. 使用 Windows 服务管理器配置服务3.3. 删除服务 四、定时任务或程序4.1 设置程序自启动(使用任务计划程序…...

【自动驾驶】基于车辆几何模型的横向控制算法 | Stanley 算法详解与编程实现
写在前面: 🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝 个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。 🔍 本文系 清流君 原创之作&…...

微服务--初识MQ
在微服务架构中,MQ(Message Queue,消息队列)作为一种重要的通信机制,扮演着至关重要的角色。 MQ,即消息队列,是一种在不同服务或系统之间传递消息的中间件。它允许消息的发送者(生产…...