当前位置: 首页 > news >正文

Flink和Spark的区别

1、设计理念不同

flink:Flink是基于事件驱动的,是面向流的处理框架, Flink基于每个事件一行一行地流式处理,是真正的流式计算. 另外他也可以基于流来模拟批进行计算实现批处理。
spark:Spark的技术理念是使用微批来模拟流的计算,基于Micro-batch,数据流以时间为单位被切分为一个个批次,通过分布式数据集RDD进行批量处理,是一种伪实时。

2、架构不同

flink:Flink 在运行时主要包含:Jobmanager、Taskmanager和Slot。
spark:Spark在运行时的主要角色包括:Master、Worker、Driver、Executor。

3、任务调度不同

flink:Flink 根据用户提交的代码生成 StreamGraph,经过优化生成 JobGraph,然后提交给 JobManager进行处理,JobManager 会根据 JobGraph 生成 ExecutionGraph,ExecutionGraph 是 Flink 调度最核心的数据结构,JobManager 根据 ExecutionGraph 对 Job 进行调度。
spark:Spark Streaming 连续不断的生成微小的数据批次,构建有向无环图DAG,根据DAG中的action操作形成job,每个job有根据窄宽依赖生成多个stage。

4、时间机制不同

flink:flink支持三种时间机制:事件时间,注入时间,处理时间,同时支持 watermark 机制处理迟到的数据,说明Flink在处理乱序大实时数据的时候,更有优势。
spark:Spark Streaming 支持的时间机制有限,只支持处理时间。使用processing time模拟event time必然会有误差, 如果产生数据堆积的话,误差则更明显。

5、容错机制不同

flink:Flink 则使用两阶段提交协议来保证exactly once。
spark:Spark Streaming的容错机制是基于RDD的容错机制,会将经常用的RDD或者对宽依赖加Checkpoint。利用SparkStreaming的direct方式与Kafka可以保证数据输入源的,处理过程,输出过程符合exactly once。

6、吞吐量与延迟不同

flink:Flink是基于事件的,消息逐条处理,而且他的容错机制很轻量级,所以他能在兼顾高吞吐量的同时又有很低的延迟,它的延迟能够达到毫秒级;

spark:spark是基于微批的,而且流水线优化做的很好,所以说他的吞入量是最大的,但是付出了延迟的代价,它的延迟是秒级;

7、状态不同

flink:flink是事件驱动型应用是一类具有状态的应用,我们要把它看成一个个event记录去处理,当遇到窗口时会进行阻塞等待,窗口的聚合操作是无状态的。过了窗口后DataStream的算子聚合操作就是有状态的操作了,所以flink要把聚合操作都放到窗口操作之前,才能进行无状态的聚合操作。而spark全程都是无状态的,所以在哪聚合都可以。
spark:spark本身是无状态的,所以我们可以把它看成一个rdd一个算子一个rdd的去处理,就是说可以看成分段处理。

8、数据不同

flink:在flink的世界观中,一切都是由流组成的,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流和无界流。流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。
spark:在spark的世界观中,一切都是由批次组成的,离线数据是一个大批次,而实时数据是由一个一个无限的小批次组成的。批处理的特点是有界、持久、大量,非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计。

有界数据流和无界数据流

无界数据流:无界数据流有一个开始但是没有结束,它们不会在生成时终止并提供数据,必须连续处理无界流,也就是说必须在获取后立即处理event。对于无界数据流我们无法等待所有数据都到达,因为输入是无界的,并且在任何时间点都不会完成。处理无界数据通常要求以特定顺序(例如事件发生的顺序)获取event,以便能够推断结果完整性。
有界数据流:有界数据流有明确定义的开始和结束,可以在执行任何计算之前通过获取所有数据来处理有界流,处理有界流不需要有序获取,因为可以始终对有界数据集进行排序,有界流的处理也称为批处理。

相关文章:

Flink和Spark的区别

1、设计理念不同 flink:Flink是基于事件驱动的,是面向流的处理框架, Flink基于每个事件一行一行地流式处理,是真正的流式计算. 另外他也可以基于流来模拟批进行计算实现批处理。 spark:Spark的技术理念是使用微批来模拟流的计算,…...

以太网开发基础-MAC和PHY

直接参考: 以太网基础-MAC和PHY-CSDN博客 路由器上一般有三类MAC地址 给一个范例: 00:0C:E5:4B:F2:85 这个地址就可以作为LAN MAC地址 00:0C:E5:4B:F2:86 这个地址就可以作为WAN MAC地址 00:0C:E5:4B:F2:87 这个地址就可以作为无线 MAC地址 通常,路由器…...

Java 发布jar包到maven中央仓库(2024年9月保姆级教程)

文章目录 前言一、账号准备1. 注册登录账号2. 新建命名空间3. 验证命名空间4. 生成令牌5. 为 maven 设置令牌二、GPG准备1. 下载GPG2. 发布证书2.1 新建证书2.2 发布证书到服务器2.3 验证发布三、发布jar包到中央仓库1. 编辑项目pom文件2. 打包上传3. 发布jar包4. 搜索我们的ja…...

Pandas和Seaborn可视化详解

1.Pandas绘图-单变量 概述 pandas库是Python数据分析的核心库 它不仅可以加载和转换数据,还可以做更多的事情:它还可以可视化 pandas绘图API简单易用,是pandas流行的重要原因之一 可视化小技巧: 如果是类别型 柱状 饼图 (类别相对较少 5-…...

【Python】Windows下安装使用FFmpeg

FFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。之前为了MP3转wav,需要pip安装并import AudioSegment,但是会报错:FileNotFoundError: [WinError 2] 系统找不到指定的文件。 因为FFmpeg需要另…...

LLM - 使用 XTuner 指令微调 多模态大语言模型(InternVL2) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/142528967 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 XTuner…...

【Python】数据可视化之热力图

热力图(Heatmap)是一种通过颜色深浅来展示数据分布、密度和强度等信息的可视化图表。它通过对色块着色来反映数据特征,使用户能够直观地理解数据模式,发现规律,并作出决策。 目录 基本原理 sns.heatmap 代码实现 基…...

个人博客系统测试(selenium)

P. S.:以下代码均在VS2019环境下测试,不代表所有编译器均可通过。 P. S.:测试代码均未展示头文件stdio.h的声明,使用时请自行添加。 博主主页:Yan. yan.                        …...

【速成Redis】01 Redis简介及windows上如何安装redis

前言: 适用于:需要快速掌握redis技能的人(比如我),在b站,找了个课看。 01.课程简介_哔哩哔哩_bilibili01.课程简介是【GeekHour】一小时Redis教程的第1集视频,该合集共计19集,视频…...

入侵检测系统(IDS)和入侵预防系统(IPS)

入侵检测系统(IDS)和入侵预防系统(IPS)是网络安全领域中用来检测和防止潜在的恶意活动或政策违规行为的系统。它们的主要目的是保护网络和主机不受未授权访问和各种形式的攻击。以下是它们的主要区别和功能: 一&#…...

pytorch 加载模型参数后 如何测试数据,应用模型预测数据,然后连续变量转换成 list 或者numpy.array padans并保存到csv文件中

在PyTorch中,加载模型参数后测试数据通常涉及以下几个步骤: 1. **加载模型**:首先,你需要定义模型的结构,然后加载预训练的参数。 2. **加载数据**:准备你的测试数据集。确保数据集已经正确地预处理&…...

uni-app开发流程(开发、预览、构建和发布过程)

uni-app 是一个使用 Vue.js 开发所有前端应用的框架,支持编写一次代码,生成可以在多个平台(如微信小程序、H5、App等)运行的应用。下面是 uni-app 的开发流程,包括从创建项目到部署的各个阶段。 1. 创建项目 通过 HB…...

Linux Shell: 使用 Expect 自动化 SCP 和 SSH 连接的 Shell 脚本详解

文章目录 0. 引言2. 解决方案3. 脚本详解脚本1:使用 SSH 和 Expect 自动化登录远端机器脚本说明 脚本2:使用 SCP 和 Expect 自动化文件上传脚本说明 脚本3:使用 SCP 和 Expect 自动化文件下载脚本说明 4. 脚本的使用方法5. 关键技术点5.1. Ex…...

深入分析MySQL事务日志-Undo Log日志

文章目录 InnoDB事务日志-Undo Log日志2.1 Undo Log2.1.1 Undo Log与原子性2.1.2 Undo的存储格式1)insert类型Undo Log2)delete类型Undo Log3)update类型Undo Log 2.1.3 Undo Log的工作原理2.1.4 Undo Log的系统参数2.1.5 Undo Log与Purge线程…...

828华为云征文 | 在Huawei Cloud EulerOS系统中安装Docker的详细步骤与常见问题解决

前言 Docker是一种轻量级的容器技术,广泛用于应用程序的开发、部署和运维。在华为云的欧拉(Huawei Cloud EulerOS)系统上安装和运行Docker,虽然与CentOS有相似之处,但在具体实现过程中,可能会遇到一些系统…...

什么是数据增强中的插值法?

一、插值法的概念 在数据增强中,插值法是一种重要的技术,它通过数学模型在已知数据点之间估计未知数据点的值。这种方法可以帮助我们在不增加实际数据的情况下,通过生成新的数据点来扩展数据集。插值法基于这样的假设:如果已知的数…...

springboot实战学习(9)(配置mybatis“驼峰命名“和“下划线命名“自动转换)(postman接口测试统一添加请求头)(获取用户详细信息接口)

接着学习。之前的博客的进度:完成用户模块的注册接口的开发以及注册时的参数合法性校验、也基本完成用户模块的登录接口的主逻辑的基础上、JWT令牌"的组成与使用以及完成了"登录认证"(生成与验证JWT令牌)具体往回看了解的链接…...

之前做了抵押贷款,现在房市不景气,马上贷款要到期了该怎么办?

面对房贷的重压,特别是对于那些正承受高息贷款之苦的现有房产业主而言,探索有效的减负策略显得尤为重要。今天,我们共同探讨几种智慧策略,旨在帮助您巧妙减轻房贷的经济负担。 一、优化贷款结构:低息置换的魔力 当前&a…...

poi生成的ppt,powerPoint打开提示内容错误解决方案

poi生成的ppt,powerPoint打开提示内容错误解决方案 最近做了ppt的生成,使用poi制作ppt,出现一个问题。微软的powerPoint打不开,提示错误信息 通过xml对比工具发现只需要删除幻灯片的某些标签即可解决。 用的是XML Notepand 分…...

基于stm32物联网身体健康检测系统

在当今社会,由于经济的发展带来了人们生活水平不断提高,但是人们的健康问题却越来越突出了,各种各样的亚健康随处可在,失眠、抑郁、焦虑症,高血压、高血糖等等侵袭着人们的健康,人们对健康的关注达到了一个…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

条件运算符

C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

GitHub 趋势日报 (2025年06月06日)

📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...