当前位置: 首页 > news >正文

【计算机科学导论】

计算机科学的本质就是解决问题,我们计算机由输入设备,处理设备和输出设备组成。

处理设备看做一个大黑盒,目的就是接收处理数据,然后发送到输出设备。计算机中存储数据就是2进制,0和1,0代表关,1代表开。

我们通过组合多个0和1也就是bit,并且赋予意义,就可以表达任何信息。1B=8bit,所能表达的信息就是0-255(00000000-11111111);

文字:UTF-8就是增加了多个字节来表达信息。可以表示中文,泰文,表情等各种东西。

颜色:3B=1px,3B分别是RGB的存储程度,屏幕上图片啥的显示的点,本质上是3B的组合。

位图是由一个个像素点组成的,每个像素都有特定的颜色值。在处理位图时,主要是针对单个像素进行操作。比如调整图像的亮度、对比度、色彩平衡等,都是通过改变每个像素的颜色值来实现的。

当放大位图时,实际上是对每个像素进行简单的重复或插值计算,以填充更多的像素空间。但这样

矢量图的计算是基于数学表达式,能够在任何大小下都保持清晰的轮廓和准确的形状

视频,帧率:每秒的帧数,每秒播放图片的个数。

所以视频是图片的集合;图片是像素色彩的集合;像素是bit的集合。bit就是晶体管和电流表示。

多媒体:文字,视频,音乐,数字,图像信息

这个bit是如何获取的,0和1怎么产生的:详解晶体管的工作原理_哔哩哔哩_bilibili

数据存储:

位,字节,字,字长。

字节是一个基本存储容量,作为内存中的最小可寻址单元,而不是访问内存中单独的位

一个字是一个字节块。cpu一次能处理的数据。

字长是cpu一次处理的数据位数。

字节主要是存储单位,用于衡量数据存储的容量大小;而字是数据处理和存储的单位,在计算机硬件中用于传递和处理数据。不同的计算机体系结构可能有不同的字长定义,但字节的大小通常是固定的 8 比特

存储音频:

数字和文字是可以数出来的,而音频是随着时间变化的实体,我们只能在每一个时刻度量音频的密度,当考虑用计算机存储音频时,其实是指一个音频信号的密度,我们在任意时间段都不可能度量所有值,因为有无穷多个。

但是我们可以采样,选择有限的点来度量。

相关文章:

【计算机科学导论】

计算机科学的本质就是解决问题,我们计算机由输入设备,处理设备和输出设备组成。 处理设备看做一个大黑盒,目的就是接收处理数据,然后发送到输出设备。计算机中存储数据就是2进制,0和1,0代表关,…...

【C++】I/O流的使用介绍

文章目录 什么是 I/O 流?C I/O 流的基本类型常用的 I/O 操作1. 标准输入输出2. 文件输入输出3. 字符串流 什么是 I/O 流? 在 C 中,I/O 流是数据的输入和输出通道。流的本质是一个字节序列,提供了抽象的方式来读写数据。C 使用流对…...

深度学习:(八)深层神经网络参数与流程

深层神经网络 符号规定 L L L :表示神经网络的层数; l l l :表示第几层; n [ l ] n^{[~l~]} n[ l ] :表示第 l l l 层的节点数; a [ l ] a^{[~l~]} a[ l ] :表示第 l l l 层中的激活函数&…...

`pattern = r“(\d+)(CNY|JPY|HKD|EUR|GBP|fen|cents|sen|eurocents|pence)“

pattern r"(\d)(CNY|JPY|HKD|EUR|GBP|fen|cents|sen|eurocents|pence)" 是一个正则表达式,用于匹配特定格式的字符串。 正则表达式解析 整体结构: r"...":前缀 r 表示这是一个原始字符串(Raw String&#x…...

宝塔面板部署雷池社区版教程

宝塔面板部署雷池社区版教程 简单介绍一下宝塔面板,安全高效的服务器运维面板,使用宝塔面板的人非常多 在网站管理上,许多用户都是通过宝塔面板进行管理,宝塔面板的Nginx默认监听端口为80和443,这就导致共存部署时雷池…...

【击败100%】258. 各位相加

首次出现,代码用时击败了100%的用户,开心~ 题目 给定一个非负整数 num,反复将各个位上的数字相加,直到结果为一位数。返回这个结果。 示例 1: 输入: num 38 输出: 2 解释: 各位相加的过程为: 38 --> 3 8 -->…...

【alist】宝塔面板docker里的alist默认admin无法登录

宝塔docker安装完alist,根据页面的提示账号密码死活登录不上,提示密码有问题 页面提示: 数据存储目录 /www/dk_project/dk_app/dk_alist 使用说明请参考: >使用教程 默认账号密码(admin/admin) 首次登录后点击个人…...

【击败100%】1281. 整数的各位积和之差

击败了100%的用户,开心~ 题目 给你一个整数 n,请你帮忙计算并返回该整数「各位数字之积」与「各位数字之和」的差。 示例 1: 输入:n 234 输出:15 解释: 各位数之积 2 * 3 * 4 24 各位数之和 2 3 4 …...

Flink基本概念和算子使用

基础概念 Flink是一个框架和分布式处理引擎,用于对无界数据流和有界数据流进行有状态计算,它的核心目标是“数据流上的有状态计算”。 有界流和无界流 有界流:具有明确的开始和结束时间,数据量有限。适合使用批处理技术&#xf…...

Kafka 3.0.0集群部署教程

1、集群规划 主机名 ip地址 node.id process.roles kafka1 192.168.0.29 1 broker,controller Kafka2 192.168.0.30 2 broker,controller Kafka3 192.168.0.31 3 broker,controller 2、将kafka包上传以上节点/app目录下 mkdir /app 3、解压kafka包 所有节点 …...

昇思MindSpore进阶教程-格式转换

大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。 技术上主攻前端开发、鸿蒙开发和AI算法研究。 努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧 MindSpore中可以把用于训练网络模型的数据…...

搜索软件 Everything 的安装与使用教程

一、Everything简介 适用于 Windows 的免费搜索工具 Everything 是 Windows 的即时搜索引擎。发现、整理并轻松访问文件和文件夹,一切尽在指尖! PS:Everything无法对文件内容进行搜索,只能根据文件名和路径进行搜索 二、Everyt…...

oracle 如何判断当前时间在27号到当月月底

在Oracle中&#xff0c;您可以使用TRUNC和LAST_DAY函数来判断当前时间是否在27号到当月月底之间。以下是一个SQL示例&#xff1a; SELECT CASE WHEN TRUNC(SYSDATE) > TRUNC(SYSDATE, DD) 26 AND TRUNC(SYSDATE) < LAST_DAY(SYSDATE) THEN 当前时间在27号到当月月底之间…...

Django 配置邮箱服务,实现发送信息到指定邮箱

一、这里以qq邮箱为例&#xff0c;打开qq邮箱的SMTP服务 二、django项目目录设置setting.py 文件 setting.py 添加如下内容&#xff1a; # 发送邮件相关配置 EMAIL_BACKEND django.core.mail.backends.smtp.EmailBackend EMAIL_USE_TLS True EMAIL_HOST smtp.qq.com EMAIL…...

Git使用手册

1、初识Git 概述&#xff1a;Git 是一个开源的分布式版本控制系统&#xff0c;可以有效、高速地处理项目版本管理。 知识点补充&#xff1a; 版本控制&#xff1a;一种记录一个或若干文件内容变化&#xff0c;以便将来查阅特定版本修订情况的系统。 分布式&#xff1a;每个人…...

sql-labs靶场

第一关&#xff08;get传参&#xff0c;单引号闭合&#xff0c;有回显&#xff0c;无过滤&#xff09; ?id-1 union select 1,2,(select group_concat(table_name) from information_schema.tables where table_schemasecurity) -- 第二关&#xff08;get传参&#xff0c;无闭…...

【Redis入门到精通二】Redis核心数据类型(String,Hash)详解

目录 Redis数据类型 1.String类型 &#xff08;1&#xff09;常见命令 &#xff08;2&#xff09;内部编码 2.Hash类型 &#xff08;1&#xff09;常见命令 &#xff08;2&#xff09;内部编码 Redis数据类型 查阅Redis官方文档可知&#xff0c;Redis提供给用户的核心数据…...

如何快速免费搭建自己的Docker私有镜像源来解决Docker无法拉取镜像的问题(搭建私有镜像源解决群晖Docker获取注册表失败的问题)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 Docker无法拉取镜像 📒📒 解决方案 📒🔖 方法一:免费快速搭建自己的Docker镜像源🎈 部署🎈 使用🔖 备用方案⚓️ 相关链接 🚓️📖 介绍 📖 在当前的网络环境下,Docker镜像的拉取问题屡见不鲜(各类Nas查询…...

QT 获取视频帧Opencv获取清晰度

先展示结果&#xff1a; 1.获取摄像头的分辨率 mResSize.clear();mResSize camera_->supportedViewfinderResolutions();ui->comboBox_resulation->clear();int i0;foreach (QSize msize, mResSize) {qDebug()<<msize;ui->comboBox_resulation->addItem(…...

生成式AI如何辅助医药行业智能营销

生成式AI在医药行业的智能营销中发挥着日益重要的作用&#xff0c;它通过多种方式辅助医药企业提升市场洞察能力、优化营销策略、增强客户互动和体验&#xff0c;从而推动销售增长和品牌价值的提升。以下是生成式AI如何辅助医药行业智能营销的具体方式&#xff1a;一、精准市场…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...

图解JavaScript原型:原型链及其分析 | JavaScript图解

​​ 忽略该图的细节&#xff08;如内存地址值没有用二进制&#xff09; 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么&#xff1a;保存在堆中一块区域&#xff0c;同时在栈中有一块区域保存其在堆中的地址&#xff08;也就是我们通常说的该变量指向谁&…...

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...