回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
目录
- 回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
粒子群算法优化随机森林(PSO-RF)回归预测(Matlab完整程序和数据)
输入6个特征,输出1个,即多输入单输出;
运行环境Matlab2018及以上,运行主程序main即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
命令窗口输出RMSEP、MAE、R2、MAPE。
程序设计
- 完整程序和数据下载方式1(资源处直接下载):MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
- 完整程序和数据下载方式2(订阅《RF随机森林》专栏,同时可阅读《RF随机森林》专栏收录的所有内容,数据订阅后私信我获取):MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
- 完整程序和数据下载方式3(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序6份,数据订阅后私信我获取):MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
%% 定义粒子群算法参数
% N 种群 T 迭代次数
%% 随机初始化种群
D=dim; %粒子维数
c1=1.5; %学习因子1
c2=1.5; %学习因子2
w=0.8; %惯性权重Xmax=ub; %位置最大值
Xmin=lb; %位置最小值
Vmax=ub; %速度最大值
Vmin=lb; %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:Npbest(i)=fobj(x(i,:));
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:Nif(pbest(i)<gbest)g=p(i,:);gbest=pbest(i);end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:Tifor j=1:N%%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%if (fobj(x(j,:))) <pbest(j)p(j,:)=x(j,:);pbest(j)=fobj(x(j,:)); end%%%%%%%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%%%%if(pbest(j)<gbest)g=p(j,:);gbest=pbest(j);end%%%%%%%%%%%%%%%%%跟新位置和速度值%%%%%%%%%%%%%%%%%%%%%v(j,:)=w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...+c2*rand*(g-x(j,:));x(j,:)=x(j,:)+v(j,:);%%%%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%%%%if length(Vmax)==1for ii=1:Dif (v(j,ii)>Vmax) | (v(j,ii)< Vmin)v(j,ii)=rand * (Vmax-Vmin)+Vmin;endif (x(j,ii)>Xmax) | (x(j,ii)< Xmin)x(j,ii)=rand * (Xmax-Xmin)+Xmin;endend elsefor ii=1:Dif (v(j,ii)>Vmax(ii)) | (v(j,ii)< Vmin(ii))v(j,ii)=rand * (Vmax(ii)-Vmin(ii))+Vmin(ii);endif (x(j,ii)>Xmax(ii)) | (x(j,ii)< Xmin(ii))x(j,ii)=rand * (Xmax(ii)-Xmin(ii))+Xmin(ii);endendendend%%%%%%%%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%%%%%%%%Convergence_curve(i)=gbest;%记录训练集的适应度值
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
restoredefaultpath%% 导入数据
P_train = xlsread('data','training set','B2:G191')';
T_train= xlsread('data','training set','H2:H191')';
% 测试集——44个样本
P_test=xlsread('data','test set','B2:G45')';
T_test=xlsread('data','test set','H2:H45')';
%% 划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
f_ = size(P_train, 1);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 参数初始化
pop=10; %种群数量
Max_iter=30; % 设定最大迭代次数
dim = 2;% 维度为2,即优化两个超参数
lb = [1,1];%下边界
ub = [20,20];%上边界
fobj = @(x) fun(x,p_train,t_train);
[Best_pos,Best_score,curve]=PSO(pop,Max_iter,lb,ub,dim,fobj); %开始优化%% 提取最优参数
n_trees = Best_pos(1);
n_layer = Best_pos(2);%% 转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';%% 创建模型
model = regRF_train(p_train, t_train, n_trees, n_layer);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测
回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测 目录回归预测 | MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测效果一览基本介绍程序设计参考资料效果一览 基本介绍 MATLAB实现PSO-RF粒子群算法优化随机森林多输入单输出回归预测 粒子…...

在小公司工作3年,从事软件测试5年了,才发现自己还是处于“初级“水平,是不是该放弃....
毕业前三年,从早到晚,加班到深夜,一年又一年,直至刚入职场的首个黄金三年过年都去了,而职位却仍在原地踏步。尽管感觉自己努力过,但是实际上,自身的能力从没得到过多少提升。 所以在无数个夜晚…...

基于 OpenCV 与 Java 两个语言版本实现获取某一图片特定区域的颜色对比度
本文目录一、什么是对比度二、什么是颜色直方图三、如何通过RGB计算颜色对比度什么是HSV、Lab颜色空间四、OpenCV代码五、Java代码5.1 平滑处理5.2 完整代码一、什么是对比度 对比度是指图像中不同区域之间的明暗差异程度,它是图像质量中的重要指标之一。除了颜色对…...

Book:实战Java高并发程序设计(第二版)
实战Java高并发程序设计(第二版)为什么会有并行计算?并行计算需要回答的问题基本概念并发级别有哪些?Amdahl定律和Gustafson定律Java并发三特性进程和线程线程的生命周期Thread类run()与start()的区别为什么会有并行计算ÿ…...

LeetCode 831. Masking Personal Information【字符串,正则表达式】中等
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...

递增三元组
[蓝桥杯 2018 省 B] 递增三元组 题目描述 给定三个整数数组 A[A1,A2,⋯,AN]A [A_1, A_2,\cdots, A_N]A[A1,A2,⋯,AN],B[B1,B2,⋯,BN]B [B_1, B_2,\cdots, B_N]B[B1,B2,⋯,BN],C[C1,C2,⋯,CN]C [C_1, C_2,\cdots,C_N]C[C1,C2,⋯,CN…...

java源码阅读 - TreeSet
往期文章 用最简单的话讲最明白的红黑树java源码阅读 - HashMap数据结构 - 堆与堆排序 文章目录往期文章一、介绍二、类的声明三、成员变量四、构造函数五、常用方法1. NavigableSet接口的实现2. SortedSet接口的实现六、总结一、介绍 在上期文章中,我们从源码层面…...

写毕业论文经验贴
首先说一句不要靠近word,会变得不幸。最好用latex写,不过我当时懒得下载latex了,于是后期改格式花了点时间 写论文之前 事先把所有的论文都查好并且整理好,论文第一、二章写起来就会很快; 把实验做顺溜,实…...

2.7 进程退出、孤儿进程、僵尸进程+2.8 wait函数+2.9 waitpid函数
1.进程退出 子进程退出时:父进程帮助子进程回收内核区的资源 exit.c /*#include <stdlib.h>void exit(int status);#include <unistd.h>void _exit(int status);status参数:是进程退出时的一个状态信息。父进程回收子进程资源的时候可以获取…...

【新2023Q2模拟题JAVA】华为OD机试 - 预订酒店
最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南华为od机试,独家整理 已参加机试人员的实战技巧本篇题解:预订酒店 题目 放暑假了,橡…...

一个完整的渗透学习路线是怎样的?如何成为安全渗透工程师?
前言 1/我是如何学习黑客和渗透? 我是如何学习黑客和渗透测试的,在这里,我就把我的学习路线写一下,让新手和小白们不再迷茫,少走弯路,拒绝时间上的浪费! 2/学习常见渗透工具的使用 注意&…...

刷完这60个标准库模块,成为Python骨灰级玩家
python强大,主要是因为包多,且不说第三方包,单是标准库就已让人望而生畏。 如果从第一篇整理标准库的博客算起,如今已有三个年头。在整理标准库的过程中,查阅了大量资料和官方文档,很多中文资料都有一个共…...

EasyExcel的简单使用(easyExcel和poi)
EasyExcel的简单使用 前言 Excel读 1.实体类 2.读监听器与测试类 3.输出结果 Excel写 1.实体类 2.写入Excel的测试类 3.输出结果 填充Excel 1.Excel模板 2.测试类 3.输出结果 前言 EasyExcel类是一套基于Java的开源Excel解析工具类,相较于传统的框架如Apache poi、…...

命名空间 namespace
一、命名空间的定义 定义命名空间,使用namespace关键字,后面跟命名空间的名字,然后接一对花括号{ } 即可,{ }中即为命名空间的成员。 1.一般定义 namespace test {int a 10;int b 100;int ADD(int x, int y){return x y;} }…...

我能“C”——初阶指针(上)
目录 1.什么是指针? 2. 指针和指针类型 3.野指针 3.1野指针的成因 3.2 如何规避野指针 1.什么是指针? 指针理解的2个要点: 1. 指针是内存中一个最小单元的编号,也就是地址 2. 平时口语中说的指针,通常指的是指针…...

Android高级工程师工资为何让人艳羡不已
很多人都想有一个月入过万的梦想,为了实现这个梦想,很多人都付出了一定的努力,但除了付出,选择一个好的行业的也是非常重要的,就眼下而言,最为多金的职业莫过于Android高级工程师,为什么Android…...

什么猫猫最受欢迎?Python采集猫咪交易数据
前言 在日常生活中,我们看到可爱的猫咪表情包,总是会忍不住收藏 认识的一些朋友也养了猫,比如橘猫、英短、加菲猫之类的 看他们发朋友圈撸猫,老羡慕了,猫咪真的太可爱啦。 你是不是也动过养猫猫的小心思呢~反正我是动…...

使用Nextcloud搭建私人云盘,并内网穿透实现公网远程访问
文章目录摘要视频教程1. 环境搭建2. 测试局域网访问3. 内网穿透3.1 ubuntu本地安装cpolar3.2 创建隧道3.3 测试公网访问4 配置固定http公网地址4.1 保留一个二级子域名4.1 配置固定二级子域名4.3 测试访问公网固定二级子域名摘要 Nextcloud,它是ownCloud的一个分支,是一个文件…...

行业盛会|2023中国(东莞)国际测量控制及仪器仪表展览会
时间:2023年11月16-18日 地点:广东现代国际展览中心 ◆展会背景background: 众所周知,当今世界已经进入信息时代,信息技术成为推动科学技术高速发展的关键技术。…...

redis集群 服务器重启测试
redis集群 服务器重启测试1、集群规划:2台服务器 每台服务器运行3个redis实例2、重启2台服务器后redis实例没有自动重启最后一对主从节点比较 重启实例后和之前的主从分配3、再次重启2台服务器4、主从同步测试1、集群规划:2台服务器 每台服务器运行3个re…...

Diffusion的unet中用到的AttentionBlock详解
AttentionBlocktorch.splittorch中的permute的用法torch.transpose()view()torch.bmmsoftmax(x, dim-1)Diffusion的unet中用到的AttentionBlock详解class AttentionBlock(nn.Module):__doc__ r"""Applies QKV self-attention with a residual connection.Input…...

ElasticSearch索引文档写入和近实时搜索
一、基本概念 1.Segments In Lucene 众所周知,ElasticSearch存储的基本单元Shard,ES中一个Index可能分为多个Shard,事实上每个Shard都是一个Lucence的Index,并且每个Lucene Index由多个Segment组成,每个Segment事实上…...

【C语言蓝桥杯每日一题】——等差数列
【C语言蓝桥杯每日一题】——等差数列😎前言🙌等差数列🙌解题思路分析:😍解题源代码分享:😍总结撒花💞😎博客昵称:博客小梦 😊最喜欢的座右铭&…...

EM7电磁铁的技术参数
电磁铁可以通过更换电磁铁极头在一定范围内改善磁场的大小和磁场的均匀度 ,并且可以通过调整极头间距改变磁场的大小。主要用于磁滞现象研究、磁化系数测量、霍尔效应研究、磁光实验、磁场退火、核磁共振、电子顺磁共振、生物学研究、磁性测量、磁性材料取向、磁性产…...

选择很重要,骑友,怎么挑选骑行装备?
骑行装备的重要性,已经不用多说了,大家也都知道。但是如何挑选,如何选择适合自己的骑行装备呢?今天我来和大家聊一聊这个问题。首先我们需要了解一个概念:骑行装备分为两大类:骑行服和骑行鞋。对于公路车来…...

【JUC面试题】Java并发编程面试题
Java并发编程 基础知识 1. 为什么要使用并发编程? 提升多核系统的CPU利用率一般来说一台主机上的会有多个CPU核心,我们可以创建多个线程,理论 上讲操作系统可以将多个线程分配给不同的CPU去执行,每个CPU执行一个线程,…...

spark笔记
spark笔记 1. 概述 Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎;Spark提供内存计算,将计算结果直接放在内存中,减少了迭代计算的IO开销,有更高效的运算效率。 1.1 Spark核心模块 Spark Core:提供S…...

丢失了packet.dll原因和解决方法全面指南
packet.dll是Windows操作系统中的一个重要文件,它主要用于网络通信,如果丢失了这个文件,可能会导致网络连接问题。本文将探讨packet.dll文件丢失的原因,并提供相应的解决方法。 一、丢失packet.dll文件的原因 1. 病毒感染&#x…...

算法练习随记(三)
1.全排列 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]示例 2: 输入&#x…...

基于Python 进行卫星图像多种指数分析
一、前言本文帮助读者更好地了解卫星数据以及使用 Python 探索和分析哨兵2卫星数号数据在Sundarbans地区的不同方法。二、Sundarbans研究区孙德尔本斯(Sundarbans)是恒河、雅鲁藏布江和梅克纳河在孟加拉湾汇合形成的三角洲中最大的红树林区之一。 孙德尔…...