【深度学习】05-RNN循环神经网络-02- RNN循环神经网络的发展历史与演化趋势/LSTM/GRU/Transformer
RNN网络的发展历史与演化趋势
RNN(Recurrent Neural Network,循环神经网络)是一类用于处理序列数据的神经网络,特别擅长捕捉数据的时间或上下文依赖性。在其发展的过程中,不断出现各种改进和变体,以解决不同的问题。我们可以从时间线的角度来梳理RNN的历史发展、发明背景、以及关键应用
1. 1980s-1990s:RNN的早期提出与梯度问题
1986年:反向传播算法
-
背景:在此之前,神经网络的训练是一个巨大的挑战,尤其是在多层网络的情况下。训练复杂网络需要传播误差信息,但没有有效的方法来解决这个问题。
-
提出者:David Rumelhart 等人。
-
贡献:提出了反向传播算法(Backpropagation),为训练多层神经网络提供了理论基础。随后,反向传播算法被扩展为通过时间的反向传播(Backpropagation Through Time, BPTT),使得RNN可以在时间维度上传播误差信息并更新参数。
-
局限性:尽管BPTT为训练RNN提供了方法,但RNN仍然面临着梯度消失和梯度爆炸问题,特别是在处理长时间序列时。梯度在反向传播的过程中要么变得过小,导致无法有效更新参数,要么过大,导致梯度爆炸,无法收敛。
1990年:Hopfield网络与递归网络
-
背景:Hopfield网络是早期递归网络的一种形式,主要用于记忆模型和时间序列数据。
-
提出者:John Hopfield。
-
贡献:提出了将神经网络用于动力学系统和联想记忆的概念。虽然Hopfield网络的思路启发了后续递归网络的研究,但它在处理复杂长时间依赖任务时效果有限。
-
局限性:与早期RNN一样,Hopfield网络难以处理长时间依赖,因为它无法有效解决梯度消失问题。
2. 1997年:LSTM的提出(为了解决梯度消失问题)
背景
问题:传统RNN由于梯度消失问题,难以捕捉长时间序列中的依赖关系,模型无法记住远距 离的上下文信息,尤其在长时间序列的数据处理任务(如文本、时间序列预测)中,表现受限。
解决方案:LSTM(Long Short-Term Memory,长短期记忆网络)的引入就是为了解决梯度消失问题,使得RNN能够有效地记住长期依赖。
提出者
Sepp Hochreiter 和 Jürgen Schmidhuber。
LSTM的核心机制
记忆单元和门控机制:LSTM通过设计输入门、遗忘门和输出门来控制信息在网络中的流动:
这种设计使得LSTM能够动态调节信息的保留和遗忘,从而更好地捕捉长期依赖关系。
- 输入门决定新信息如何进入单元。
- 遗忘门决定旧信息是否应该被丢弃。
- 输出门决定当前时刻的输出。
应用场景
- 自然语言处理(NLP):LSTM能够在长文本的处理过程中捕捉到远距离的依赖关系,提升了翻译、文本生成等任务的性能。
- 语音识别:语音识别任务中的语音信号具有长时间依赖性,LSTM在捕捉语音片段间的关联上表现出色。
3. 2014年:GRU的提出(简化LSTM)
背景
-
问题:尽管LSTM解决了梯度消失问题,但其结构较为复杂,计算开销较大。为提高计算效率,同时保留长时间依赖的处理能力,研究者们希望设计出更简洁的网络结构。
-
解决方案:门控循环单元(Gated Recurrent Unit, GRU)的提出,是对LSTM的简化版本。
提出者
-
Kyunghyun Cho等人。
GRU的核心机制
-
两门机制:GRU去掉了LSTM中的输出门,只保留了重置门和更新门,从而简化了网络结构。
- 重置门:控制当前输入与过去信息的融合程度。
- 更新门:控制新旧信息的交换程度,类似于LSTM的遗忘门。
优势
-
GRU在某些任务中的表现与LSTM相当,但由于结构更简单,GRU具有更快的训练速度和更低的计算成本。
应用场景
-
文本分类、文本生成:GRU因其计算效率,在自然语言处理的多个任务中被广泛应用,特别是文本分类和机器翻译。
4. 2017年:注意力机制与Transformer的提出
背景
-
问题:尽管LSTM和GRU在处理长时间依赖任务中表现优秀,但RNN的序列化处理特性使得它无法并行计算,训练速度相对较慢,尤其是处理超长序列时效率较低。
-
解决方案:Transformer模型通过引入自注意力机制(Self-Attention),彻底摆脱了RNN的循环结构,可以并行处理序列数据,极大提升了训练速度和性能。
提出者
-
Ashish Vaswani 等人在2017年提出。
Transformer的核心机制
- 自注意力机制:每个输入单元通过计算与序列中所有其他单元的关系,生成上下文依赖。这样,Transformer无需依赖时间步的前后顺序即可捕捉到序列中的远距离依赖。
- 并行处理:Transformer允许序列中的每个位置并行处理数据,解决了RNN不能并行处理的局限性。
应用场景
-
自然语言处理(NLP):Transformer在NLP任务中迅速崛起,特别是在机器翻译、文本生成和语言建模等任务中大放异彩。基于Transformer的模型,如BERT和GPT,已经成为主流模型,几乎取代了RNN在许多任务中的地位。
- BERT(Bidirectional Encoder Representations from Transformers):Google在2018年发布 的预训练模型,利用双向Transformer捕捉上下文依赖,广泛应用于问答、分类、情感分析等任务。
- GPT(Generative Pre-trained Transformer):OpenAI基于Transformer架构提出的生成模型,能够进行高质量的文本生成和对话系统构建,极大提升了自然语言生成任务的性能。
-
语音识别与合成:Transformer也被应用于语音识别与语音合成任务中,如Transformer-TTS,使得语音合成质量更自然。
5. RNN的改进与变体
随着时间推移,研究者们不断对RNN进行改进,以增强其对复杂序列数据的处理能力。这些变体在不同任务中发挥了独特作用。
5.1. 双向RNN(Bidirectional RNN)
- 问题:在许多任务中,单向RNN只能从前向后处理序列信息,但实际序列中的信息可能同时依赖于前后文。
- 解决方案:双向RNN通过在两个方向上同时处理序列信息,使得模型既可以依赖前序信息,也可以利用后序信息。
提出者
-
Mike Schuster 和 Kuldip K. Paliwal 在1997年提出。
双向RNN的优势
-
在自然语言处理任务中,当前单词不仅依赖于前面的单词,也依赖于后面的单词。例如,处理句子“我爱你”的时候,双向RNN能够更好地理解“我”与“你”之间的联系。
应用场景
- 语音识别:双向RNN(如双向LSTM)在语音识别任务中表现尤为优异。例如,Google的语音助手、百度的Deep Speech等语音识别系统广泛采用双向LSTM来处理语音信号。
- 机器翻译:双向RNN在机器翻译任务中,通过同时捕捉源语言和目标语言的上下文信息,提升了翻译的准确性和流畅度。
5.2. 深度RNN(Deep RNN)
- 问题:原始的RNN层数较少,无法充分捕捉复杂序列中的深层次依赖。
- 解决方案:通过堆叠多个RNN层形成深度RNN,可以提升模型的表达能力和对复杂时序任务的处理效果。
提出者
-
Alex Graves等人在2013年率先提出深度RNN,通过增加网络层数来提升模型的表达能力。
深度RNN的优势
-
处理复杂序列依赖:通过多层RNN堆叠,深度RNN能够捕捉到更复杂的时间序列关系,并具备更高的特征抽象能力。
应用场景
- 语音识别:Baidu的Deep Speech 2系统采用了深度双向LSTM,通过训练深度网络,语音识别的准确率得到了显著提升,特别是在嘈杂环境下的表现更加优异。
- 时间序列预测:深度RNN在金融、气象等领域的时间序列预测任务中表现突出,能够捕捉更复杂的模式。
6. RNN的局限与Transformer的崛起
6.1. RNN的局限性
尽管RNN及其变体(LSTM、GRU)解决了很多序列处理中的问题,但仍存在以下局限:
- 并行化困难:RNN由于其依赖于前后时间步的计算结果,难以并行处理,训练速度较慢。
- 长距离依赖问题:即使是LSTM和GRU,在处理极长的序列时,仍然面临一定程度的长距离依赖困难,信息可能随着时间步衰减。
6.2. Transformer的崛起(2017年)
-
背景:RNN的计算限制(如不能并行化)推动了新的模型结构的探索。Transformer通过自注意力机制完全摆脱了循环结构,使得模型能够并行处理序列,并极大提升了长距离依赖问题的解决能力。
-
Transformer的优势:
- 并行计算:序列中的所有位置都可以同时进行计算,大大提高了训练速度。
- 长距离依赖:自注意力机制能够捕捉到序列中任意距离的依赖关系,而无需像RNN那样逐步传递信息。
-
应用场景:Transformer的出现使得RNN在NLP中的地位逐渐被取代。
-
BERT和GPT等基于Transformer的模型在机器翻译、文本生成、文本分类等任务中表现优异,已成为NLP领域的标准模型。
-
7. 近期RNN的应用与未来趋势
尽管Transformer在NLP等领域迅速崛起,但RNN及其变体(LSTM、GRU)仍在许多领域发挥着重要作用,特别是在处理需要时间序列建模的任务中。
7.1. 近期应用
- 金融领域:LSTM和GRU仍然广泛应用于股票市场预测、期货分析等金融时间序列数据的建模中。
- 医疗领域:在医学诊断、病人生命体征监控等任务中,LSTM用于处理复杂的时间序列数据,帮助预测病情发展。
- 语音处理:尽管Transformer模型逐步进入语音识别领域,但在低资源和小规模的应用场景中,RNN(尤其是GRU)仍然表现优异。
7.2. 未来趋势
- Transformer模型的进一步扩展:Transformer模型已经在自然语言处理和计算机视觉领域取得了显著成果,未来的趋势是更多任务和领域转向Transformer架构。
- RNN与其他网络的结合:未来可能会出现更多RNN与CNN、RNN与Transformer结合的混合模型,以充分利用不同模型的优势。
总结
- RNN的早期发展:RNN的提出解决了序列数据的建模问题,但面临梯度消失和梯度爆炸的挑战。
- LSTM和GRU的提出:LSTM和GRU通过门控机制缓解了梯度消失问题,使得RNN能够有效处理长时间依赖。
- Transformer的崛起:Transformer通过自注意力机制替代了RNN,解决了并行化和长距离依赖的问题,逐渐取代RNN成为NLP中的主流模型。
- RNN的应用与未来:尽管Transformer正在许多领域取代RNN,但RNN仍在时间序列预测、语音处理和金融分析等领域发挥着重要作用。未来,RNN与其他模型的结合将成为重要发展方向。
相关文章:
【深度学习】05-RNN循环神经网络-02- RNN循环神经网络的发展历史与演化趋势/LSTM/GRU/Transformer
RNN网络的发展历史与演化趋势 RNN(Recurrent Neural Network,循环神经网络)是一类用于处理序列数据的神经网络,特别擅长捕捉数据的时间或上下文依赖性。在其发展的过程中,不断出现各种改进和变体,以解决不…...

C++学习9.27
1、顺序表、栈、队列都更改成模板类 (1)顺序表 #include <iostream> #include <cstring>using namespace std;template <typename T1,typename T2,typename T3> class My_string { private:T1 *ptr; //指向字符数组的指针T2…...

【STM32开发环境搭建】-1-Keil(MDK) 5.27软件安装和注册教程
目录 1 安装前装备工作 2 安装KEIL(MDK-ARM) 5.27软件 3 注册KEIL(MDK-ARM) 5.27软件,获取License许可证 4 手动安装STM32F0,STM32F1,STM32F4,STM32F7,STM32H7的支持包 4.1 下载STM32的支持包 4.2 安装STM32的支…...
武汉正向科技格雷母线公司,无人天车系统,采用格雷母线定位技术
正向科技-格雷母线高精确定位技术-实操视频 高精度格雷母线内胆采用刚性内胆,基板采用精密度数控加工工艺,穿线卡采用高精度模具制作,不采用泡沫板填充,提高了地址检测精度和线性度。 最新一代的格雷母线定位技术特点是全数字化检…...

【保姆级教程】批量下载Pexels视频Python脚本(以HumanVid数据集为例)
目录 方案一:转换链接为download模式 方案二:获取源链接后下载 附录:HumanVid链接 方案一:转换链接为download模式 将下载链接的后缀加入 /download 然后用下面的脚本下载: import argparse import json import o…...

Python画笔案例-067 绘制配乐七角星
1、绘制橙子 通过 python 的turtle 库绘制 配乐七角星,如下图: 2、实现代码 绘制 配乐七角星 ,以下为实现代码: """配乐七角星.py本程序需要coloradd模块支持,安装方法:pip install coloradd""" import turtle from coloradd import color…...
Spark Job 对象 详解
在 Apache Spark 中,Job 对象是执行逻辑的核心组件之一,它代表了对一系列数据操作(如 transformations 和 actions)的提交。理解 Job 的本质和它在 Spark 中的运行机制,有助于深入理解 Spark 的任务调度、执行模型和容…...
C#中NModbus4中常用的方法
NModbus4 是一个用于 Modbus 协议通信的 C# 库,它支持串行 ASCII、RTU、TCP 和 UDP 协议。以下是 NModbus4 中常用的一些方法: 创建连接: ModbusSerialMaster.CreateRtu(SerialPort serialPort): 创建一个 RTU 串行连接。ModbusSerialMaster.…...

【Linux】线程同步与互斥
一、线程间互斥 1 .进程线程间的互斥相关概念 临界资源:多线程执行流共享的资源就叫做临界资源 临界区:每个线程内部,访问临界资源的代码,就叫做临界区 互斥:任何时刻,互斥保证有且只有一个执行流进入临界…...

003、网关路由问题
1. nginx配置404跳转回默认路由 https://blog.csdn.net/masteryee/article/details/83689954 https://blog.csdn.net/IbcVue/article/details/133230460 https://www.jb51.net/server/317970ynk.htm https://blog.csdn.net/u014438244/article/details/120531287 https://blog…...
Eclipse 快捷键:提高开发效率的利器
Eclipse 快捷键:提高开发效率的利器 Eclipse 是一款广泛使用的集成开发环境(IDE),它为Java、C、PHP等编程语言提供了强大的开发支持。对于开发者来说,熟练掌握Eclipse的快捷键不仅能提高编码效率,还能减少…...
Agent智能体
Agent(智能体)是一个能够感知环境并采取行动的自主实体,通常被设计用于在特定的环境中执行任务。智能体可以通过学习、推理等方式来决策,目标是最大化某种效用或实现某个预定的目标。它们广泛应用于自动化系统、游戏AI、机器人、自…...

用Promise实现前端并发请求
/** * 构造假请求 */ async function request(url) {return new Promise((resolve) > {setTimeout(() > {resolve(url);},// Math.random() * 500 800,1000,);}); }请求一次,查看耗时,预计应该是1s: async function requestOnce() {c…...

通过队列实现栈
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。 实现 MyStack 类: void push(int x) 将元素 x 压入栈顶。int pop() 移除并返回栈顶元素。int to…...

Mac下可以平替paste的软件pastemate,在windows上也能用,还可以实现数据多端同步
Mac平台上非常经典的剪贴板管理工具:「Paste」。作为一款功能完善且易用的工具,「Paste」在实际使用中体现出了许多令人欣赏的特点。但是它是一个收费软件,一年至少要24美元. 现有一平替软件pastemate,功能更加丰富,使用更加方便。 下载地址…...

106. 从中序与后序遍历序列构造二叉树
文章目录 106. 从中序与后序遍历序列构造二叉树思路 105. 从前序与中序遍历序列构造二叉树思路 思考 106. 从中序与后序遍历序列构造二叉树 106. 从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和postorder,其中 inorder 是二叉树的中序遍历ÿ…...
监控和日志管理:深入了解Nagios、Zabbix和Prometheus
在现代IT运维中,监控和日志管理是确保系统稳定性和性能的关键环节。本文将介绍三种流行的监控工具:Nagios、Zabbix和Prometheus,帮助您了解它们的特点、使用场景以及如何进行基本配置。 一、Nagios Nagios 是一个强大的开源监控系统&#x…...
Win10下载Python:一步步指南
Win10下载Python:一步步指南 在Win10操作系统中下载并安装Python可能是一项挑战性的任务,但是在本文中,我们将向您提供三个不同的方法,以便轻松地完成这项任务。 方法一:使用Microsoft Store Microsoft Store是一个…...

Race Karts Pack 全管线 卡丁车赛车模型素材
是8辆高细节、可定制的赛车,内部有纹理。经过优化,可在手机游戏中使用。Unity车辆系统已实施-准备驾驶。 此套装包含8种不同的车辆,每种车辆有8-10种颜色变化,总共有75种车辆变化! 技术细节: -每辆卡丁车模型使用4种材料(车身、玻璃、车轮和BrakeFlare) 纹理大小: -车…...
C#——switch案例讲解
案例:根据输入的内容判断执行哪一条输出语句 string number txtUserName.Text; switch(number) { case"101":MessageBox.Show("您进入了101房间");break; case"102":MessageBox.Show("您进入了102房间");break; case&quo…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...